cs.AI updates on arXiv.org 04月16日 12:03
System-1.x: Learning to Balance Fast and Slow Planning with Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了System-1.x Planner,一个利用大型语言模型(LLMs)进行可控规划的框架。该框架结合了快速的“System-1”模式(直接生成计划)和慢速的“System-2”模式(通过搜索逐步规划),以平衡计算效率和规划效果。System-1.x Planner包含控制器、System-1规划器和System-2规划器,通过用户指定的混合因子控制两种模式的混合程度。实验结果表明,该框架在迷宫导航和积木世界等任务中,优于单独的System-1或System-2规划器,以及符号规划器,展现出良好的可控性、灵活性和泛化能力。

🎯 System-1.x Planner是一个可控规划框架,它利用LLMs来解决长时程规划问题。该框架融合了两种不同的规划模式:System-1模式(快速,无搜索)和System-2模式(慢速,基于搜索)。

⚙️ System-1.x Planner由三个关键部分组成:控制器、System-1规划器和System-2规划器。控制器基于用户指定的混合因子(x),将问题分解为子目标,并根据难易程度分配给System-1或System-2处理。

📈 实验结果表明,System-1.x Planner在迷宫导航和积木世界等规划任务中表现出色。它优于System-1规划器、System-2规划器和符号规划器(A*)。System-1.x Planner展现出可控性、灵活性和泛化能力。

🕹️ System-1.x Planner具有可控性,通过调整混合因子,可以控制搜索的程度,从而提高性能。它还能通过构建神经-符号变体,结合神经System-1和符号System-2,利用现有的符号方法。

🌐 System-1.x Planner具有良好的泛化能力,能够从不同的搜索算法中学习,对搜索算法的选择具有鲁棒性。

arXiv:2407.14414v2 Announce Type: replace Abstract: Language models can be used to solve long-horizon planning problems in two distinct modes: a fast 'System-1' mode, directly generating plans without any explicit search or backtracking, and a slow 'System-2' mode, planning step-by-step by explicitly searching over possible actions. While System-2 is typically more effective, it is also more computationally expensive, making it infeasible for long plans or large action spaces. Moreover, isolated System-1 or 2 ignores the user's end goals, failing to provide ways to control the model's behavior. To this end, we propose the System-1.x Planner, a controllable planning framework with LLMs that is capable of generating hybrid plans and balancing between the two planning modes based on the difficulty of the problem at hand. System-1.x consists of (i) a controller, (ii) a System-1 Planner, and (iii) a System-2 Planner. Based on a user-specified hybridization factor (x) governing the mixture between System-1 and 2, the controller decomposes a problem into sub-goals, and classifies them as easy or hard to be solved by either System-1 or 2, respectively. We fine-tune all three components on top of a single base LLM, requiring only search traces as supervision. Experiments with two diverse planning tasks -- Maze Navigation and Blocksworld -- show that our System-1.x Planner outperforms a System-1 Planner, a System-2 Planner trained to approximate A search, and also a symbolic planner (A). We demonstrate the following key properties of our planner: (1) controllability: increasing the hybridization factor (e.g., System-1.75 vs 1.5) performs more search, improving performance, (2) flexibility: by building a neuro-symbolic variant with a neural System-1 and a symbolic System-2, we can use existing symbolic methods, and (3) generalizability: by being able to learn from different search algorithms, our method is robust to the choice of search algorithm.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 规划 System-1 System-2 混合规划
相关文章