少点错误 04月09日 23:43
Reverse engineering the memory layout of GPU inference
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

该研究探讨了在现代GPU上运行的推理过程中,如何通过性能事件逆向工程其内存布局。研究重点在于解决在设备端进行此类分析的技术挑战,包括离线预处理的不可行性、主机端预处理的限制以及精确预处理的困难。研究采用概率数据结构(如Count-min sketches)进行近似摘要,并通过机器学习方法对内存进行分割。最终,研究实现了对GPU上运行的未知推理过程的内存布局重建,并讨论了未来的研究方向,包括优化开销、基于语义分析的更优雅方法以及提高对抗干扰的鲁棒性。

🧐 研究的核心目标是逆向工程GPU上推理过程的内存布局,这对于虚拟外交和AI治理具有重要意义。

💡 在设备端进行内存布局重建面临诸多挑战,包括数据量巨大、需要在线处理以及对性能的影响。

📊 研究采用了Count-min sketches等概率数据结构来压缩和管理性能数据,以解决在线处理的难题。

🧠 研究使用机器学习方法对内存进行分割,从而识别和定位关键的内存对象,如feed-forward参数和KV-cache。

🚀 研究结果表明,可以通过分析性能事件,准确地重建GPU上未知推理过程的内存布局。

Published on April 9, 2025 3:40 PM GMT

Background Context

This research note provides a brief overview of our recent work on reverse engineering the memory layout of an inference process running on a modern hardware accelerator. We situate this work as follows:

Technical Challenges

While our previous host-side work provided a useful stepping stone, the on-device setting presented several novel obstacles which required us to refine our approach:

To the best of our knowledge, this is the first time when memory activity has been comprehensively tracked on a per-page basis on modern GPUs, albeit with error bounds inherited from the count-min sketch. The several hurdles posed by the sheer volume of data emitted by the embarrassingly parallel hardware may explain this. Note that we later argue that we may have used a machine learning hammer to cast a computer science problem as a nail, and that a more elegant approach to segmentation may be possible, though the bitter lesson will tell.

Memory Segmentation

Despite the novelty of instrumenting kernels to "track themselves" using count-min sketches, the general approach to memory segmentation remained the same as before: treat it as a machine learning problem.

Reconstructing the memory layout of a previously unseen inference process running on a GPU.

Future Work

Where do we go from this feasibility study? Several directions and implications are relevant:



Discuss

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

GPU 内存布局 逆向工程 推理 人工智能
相关文章