王泽宇 2025-04-01 20:41 浙江
4月2日晚8点,更有核心作者直播分享SptialLM更多技术细节,来预约!
模型地址:
conda install -y nvidia/label/cuda-12.4.0::cuda-toolkit conda-forge::sparsehash
[tool.poetry]
name = "spatiallm"
version = "0.0.1"
description = "SpatialLM: Large Language Model for Spatial Understanding"
authors = ["ManyCore Research Team"]
license = "Llama3.2"
readme = "README.md"
[tool.poetry.dependencies]
python = ">=3.10,<3.13"
transformers = ">=4.41.2,<=4.46.1"
safetensors = "^0.4.5"
pandas = "^2.2.3"
einops = "^0.8.1"
numpy = "^1.26"
scipy = "^1.15.2"
scikit-learn = "^1.6.1"
toml = "^0.10.2"
tokenizers = ">=0.19.0,<0.20.4"
huggingface_hub = ">=0.25.0"
rerun-sdk = ">=0.21.0"
shapely = "^2.0.7"
bbox = "^0.9.4"
terminaltables = "^3.1.10"
open3d = "^0.19.0"
nvidia-cudnn-cu12 = "*"
nvidia-nccl-cu12 = "*"
poethepoet = {extras = ["poetry-plugin"], version = "^0.33.1"}
addict = "^2.4.0"
[tool.poe.tasks]
install-torchsparse = "pip install git+https://github.com/mit-han-lab/torchsparse.git"
[build-system]
requires = ["poetry-core", "setuptools", "wheel", "torch"]
build-backend = "poetry.core.masonry.api"
pip install poetry && poetry config virtualenvs.create false --local
poetry install
TorchSparse是一种基于PyTorch构建的高效稀疏张量处理库,专门用于加速三维稀疏卷积神经网络的训练和推理。
poe install-torchsparse
点云数据(Point Cloud)是一种由大量空间点组成的数据集合,每个点记录了其在三维空间中的位置坐标,通常还包含颜色或反射强度信息,可用于精确描述三维物体或场景的空间结构。 如果想要使用自己录制的视频,可以参照MASt3R-SLAM进行三维重建。
huggingface-cli download manycore-research/SpatialLM-Testset pcd/scene0000_00.ply --repo-type dataset --local-dir .
modelscope download manycore-research/SpatialLM-Llama-1B --local_dir ./manycore-research/SpatialLM-Llama-1B
python inference.py --point_cloud ./pcd/scene0000_00.ply --output scene0000_00.txt --model_path ./manycore-research/SpatialLM-Llama-1B
python visualize.py --point_cloud ./pcd/scene0000_00.ply --layout scene0000_00.txt --save scene0000_00.rrd
rerun scene0000_00.rrd
考虑到部分同学配置环境可能会遇到一些问题,我们在AutoDL平台准备了SpatialLM的环境镜像,点击下方链接并直接创建Autodl示例即可。 https://www.codewithgpu.com/i/datawhalechina/self-llm/SpatialLM