MarkTechPost@AI 04月07日 12:35
A Step-by-Step Coding Guide to Building a Gemini-Powered AI Startup Pitch Generator Using LiteLLM Framework, Gradio, and FPDF in Google Colab with PDF Export Support
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一个使用Google Gemini Pro模型、LiteLLM框架、Gradio和FPDF构建的AI创业点子生成器的教程。该应用能够根据用户输入的行业主题,生成创业点子、标语和推介PPT,并将其导出为PDF文件。教程详细介绍了如何使用LiteLLM简化与不同LLM提供商的交互,利用Gradio创建用户界面,以及使用FPDF生成格式良好的PDF文档。通过此教程,开发者可以快速构建智能、可投入生产的应用。

💡该项目使用LiteLLM作为核心,它提供了一个统一的接口,通过OpenAI兼容的API与超过100个LLM提供商交互,简化了与各个SDK的复杂交互。

💻该项目采用Gradio构建用户友好的界面,用户可以在其中输入主题或行业,并接收生成的创业点子、标语和推介PPT。

✍️ 使用FPDF将AI生成的推介PPT导出为PDF文件,支持Unicode编码,确保特殊字符的正确显示。

⚙️ call_gemini函数是该项目的核心,它封装了使用LiteLLM的completion API与Gemini 2.0 Flash Lite模型交互的过程,简化了请求的发送和响应的获取。

🚀 generate_startup_pitch函数负责整个创业点子的生成过程,它通过LiteLLM向Gemini发送定制的提示,生成创业点子、标语和推介PPT,并将它们组合成一个格式化的PDF文件。

In this tutorial, we built a powerful and interactive AI application that generates startup pitch ideas using Google’s Gemini Pro model through the versatile LiteLLM framework. LiteLLM is the backbone of this implementation, providing a unified interface to interact with over 100 LLM providers using OpenAI-compatible APIs, eliminating the complexity of dealing with individual SDKs. By leveraging LiteLLM, we seamlessly connected to Gemini’s capabilities for creative ideation and wrapped the outputs into a user-friendly Gradio interface. Also, we used FPDF to generate polished, Unicode-compatible PDFs containing the full startup pitch deck. This tutorial demonstrates how modern AI tooling, including LiteLLM, Gradio, Google Generative AI, and FPDF, can build an end-to-end solution for entrepreneurs, innovators, and developers.

!pip install litellm gradio fpdf --quiet

!pip install litellm gradio fpdf –quiet installs the core libraries needed for this project. It brings in LiteLLM for interacting with Gemini via a unified API, Gradio for creating a simple web interface, and FPDF for exporting the AI-generated pitch into a well-formatted PDF file—all while suppressing verbose installation logs with –quiet.

import osimport gradio as grimport uuidimport urllib.requestfrom fpdf import FPDFfrom litellm import completionapi_key = "Your API Key"

We import all the essential Python libraries used in the project, including os for file operations, uuid for generating unique filenames, and urllib for downloading fonts. We also initialize Gradio for the UI, FPDF for PDF creation, and LiteLLM’s completion function to interface with Gemini. The api_key variable stores the user’s Gemini API key, which is required to authenticate requests.

import urllib.requestimport zipfileimport osimport shutilif not os.path.exists("DejaVuSans.ttf"):    print(" Downloading DejaVuSans.ttf...")    font_zip_url = "https://downloads.sourceforge.net/project/dejavu/dejavu/2.37/dejavu-fonts-ttf-2.37.zip"    font_zip_path = "dejavu-fonts.zip"    urllib.request.urlretrieve(font_zip_url, font_zip_path)    with zipfile.ZipFile(font_zip_path, 'r') as zip_ref:        zip_ref.extractall("dejavu-extracted")    for root, dirs, files in os.walk("dejavu-extracted"):        for file in files:            if file == "DejaVuSans.ttf":                ttf_path = os.path.join(root, file)                shutil.copy(ttf_path, "DejaVuSans.ttf")                print(" Font extracted and ready.")                break

Here, we ensure that the DejaVuSans.ttf font is available to create Unicode-compatible PDFs. It downloads the font zip file from SourceForge, extracts its contents, and copies the .ttf file to the working directory. This step is crucial for handling special characters from Gemini’s output when generating the final pitch PDF using FPDF.

def call_gemini(system_prompt, user_prompt):    messages = [        {"role": "system", "content": system_prompt},        {"role": "user", "content": user_prompt}    ]    response = completion(        model="gemini/gemini-2.0-flash-lite",        messages=messages,        api_key=api_key    )    return response["choices"][0]["message"]["content"]

This function, call_gemini, is a wrapper that uses LiteLLM’s completion API to interact with the Gemini 2.0 Flash Lite model. It accepts a system prompt and a user prompt, structures them in OpenAI-compatible format, sends the request using the provided API key, and returns the generated response—making it easy to reuse across various application parts.

def generate_startup_pitch(theme):    try:        idea_prompt = f"Generate an innovative startup idea in the field of {theme}. Focus on solving real problems using modern technology."        tagline_prompt = "Based on the idea you just gave, generate a short, catchy tagline for the startup."        pitch_prompt = """        Based on the previous startup idea, write a concise pitch deck covering:        1. Problem        2. Solution        3. Market Opportunity        4. Team Description        5. Business Model        6. Traction or Future Plan        Format it in a way that looks like slide notes for a VC pitch.        """        idea = call_gemini("You are an innovation strategist.", idea_prompt)        tagline = call_gemini("You are a branding expert.", tagline_prompt)        pitch = call_gemini("You are a startup mentor writing a pitch deck.", pitch_prompt)        filename = f"startup_pitch_{uuid.uuid4().hex[:8]}.pdf"        pdf = FPDF()        pdf.add_page()        pdf.add_font("DejaVu", "", font_path, uni=True)        pdf.set_font("DejaVu", size=12)        full_text = f"Startup Idea:\n{idea}\n\nTagline:\n{tagline}\n\nPitch Deck:\n{pitch}"        pdf.multi_cell(0, 10, full_text)        pdf.output(filename)        return idea, tagline, pitch, filename    except Exception as e:        return f" Error: {e}", "", "", None

The generate_startup_pitch function orchestrates the entire startup generation process. It sends tailored prompts to Gemini via LiteLLM to produce a startup idea, a catchy tagline, and a structured pitch deck. The responses are then combined into a formatted PDF using FPDF, with proper Unicode support via the DejaVu font. The PDF is saved with a unique filename, enabling users to download their personalized pitch. Error handling ensures smooth execution and user feedback in case of failures.

with gr.Blocks() as demo:    gr.Markdown("#  AI Startup Pitch Generator (with PDF Export)")    theme_input = gr.Textbox(label="Enter a theme or industry", placeholder="e.g., mental health, fintech, climate tech")    generate_button = gr.Button("Generate Pitch")    idea_output = gr.Textbox(label="Startup Idea")    tagline_output = gr.Textbox(label="Tagline")    pitch_output = gr.Textbox(label="Pitch Deck Summary", lines=10)    pdf_output = gr.File(label="Download Pitch as PDF")    def wrapper(theme):        idea, tagline, pitch, pdf_path = generate_startup_pitch(theme)        return idea, tagline, pitch, pdf_path    generate_button.click(fn=wrapper, inputs=theme_input, outputs=[idea_output, tagline_output, pitch_output, pdf_output])demo.launch(share=True)

We defined the Gradio user interface for the AI Startup Pitch Generator. Using gr.Blocks() creates a clean layout with an input box for the user to enter a startup theme or industry and a button to trigger the pitch generation. Once clicked, the wrapper function calls generate_startup_pitch, returning a startup idea, tagline, pitch summary, and a downloadable PDF. The share=True flag enables public access to the app, making it easy to demo or share the tool with others via a unique URL.

App Interface to Generate Ideas

Download the PDF Report

In conclusion, by combining the abstraction power of LiteLLM with the creative intelligence of Google’s Gemini Pro, this tutorial highlights how developers can rapidly prototype intelligent, production-ready applications. LiteLLM drastically simplifies working with diverse LLM APIs by maintaining a consistent OpenAI-style calling interface across providers like Gemini, Claude, OpenAI, and more. Through Gradio, we added an intuitive front end to accept user input and display results, while FPDF allowed us to convert AI-generated content into shareable, well-formatted PDF documents. This tutorial showcases how to build a multi-component AI app in a Colab-friendly environment and underlines LiteLLM’s role as a pivotal gateway to the expanding ecosystem of language models. Whether you’re building MVPs or production tools, LiteLLM offers the flexibility and scalability to keep your LLM workflow fast and future-proof.


Here is the Colab Notebook. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 85k+ ML SubReddit.

[Register Now] miniCON Virtual Conference on OPEN SOURCE AI: FREE REGISTRATION + Certificate of Attendance + 3 Hour Short Event (April 12, 9 am- 12 pm PST) + Hands on Workshop [Sponsored]

The post A Step-by-Step Coding Guide to Building a Gemini-Powered AI Startup Pitch Generator Using LiteLLM Framework, Gradio, and FPDF in Google Colab with PDF Export Support appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LiteLLM Gemini Pro Gradio FPDF AI创业
相关文章