中国科技报 04月01日
[要 闻] 我科学家研制出毫秒级可集成量子存储器
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

中国科学技术大学郭光灿院士团队在量子存储器研究中取得重要突破,基于无噪声光子回波(NLPE)方案,将可集成量子存储器的存储时间从10微秒级提升至毫秒级,并超越了传统光纤延迟线的效率。该研究通过飞秒激光微加工技术制备了圆对称的凹陷包层光波导,结合NLPE方案提升存储效率,实现了原子基态的自旋波可集成量子存储。研究成果为长程量子网络的实际应用奠定了基础。

💡 传统量子存储器面临挑战:由于集成器件中的噪声难以滤除以及存储效率受限,现有装置的存储时间仅为10微秒级,存储效率远低于光纤延迟线的传输效率,这限制了其在远程量子通信中的应用。

✨ 研究团队的创新方案:研究团队利用飞秒激光微加工技术,在掺铕硅酸钇晶体中制备了圆对称的凹陷包层光波导,实现了基于偏振自由度的噪声滤除,并结合NLPE量子存储方案大幅提升了存储效率。

🔬 关键技术:通过在晶体上表面集成了共面电波导,施加射频磁场实现对光波导内铕离子核自旋跃迁的动力学解耦控制,从而将自旋波量子存储寿命延长至毫秒级。

💯 实验结果:当光量子比特的存储时间达1.021毫秒时,其存储效率达到12.0%±0.5%,这一效率远超对应延时的光纤延迟线的传输效率,证明了可集成量子存储器件的优越性。

    科技日报合肥3月31日电 (记者吴长锋)3月31日,记者从中国科学技术大学获悉,中国科学院院士、中国科学技术大学教授郭光灿团队的李传锋、周宗权研究组,基于团队原创的无噪声光子回波(NLPE)方案,将可集成量子存储器的存储时间从10微秒级提升至毫秒级,同时成功突破了传统光纤延迟线的效率。该成果日前发表在国际学术期刊《科学·进展》上。

    由于集成器件中噪声难以滤除且存储效率受限,现有装置仅能实现在原子激发态的存储,存储时间仅达10微秒级,存储效率远低于光纤延迟线的传输效率。这从根本上限制了其在远程量子通信中的实际应用。

    为解决这一难题,研究团队利用飞秒激光微加工技术,在掺铕硅酸钇晶体中制备了圆对称的凹陷包层光波导,实现了基于偏振自由度的噪声滤除,并结合团队原创的NLPE量子存储方案大幅提升了存储效率,从而实现了在原子基态的自旋波可集成量子存储。

    近期,团队在晶体上表面集成了共面电波导,通过施加射频磁场实现对光波导内铕离子核自旋跃迁的动力学解耦控制,从而将自旋波量子存储寿命延长至毫秒级。当光量子比特的存储时间达1.021毫秒时,其存储效率达到12.0%±0.5%,这一效率远超对应延时的光纤延迟线的传输效率,充分证明了可集成量子存储器件在功能上已不可能被光纤延迟线替代。

    研究人员表示,该研究工作把可集成量子存储器的寿命从10微秒级提升至毫秒级,首次实现了存储效率超越光纤延迟线的突破,为可集成量子存储在长程量子网络中的实际应用奠定了坚实基础。

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

量子存储器 NLPE 量子通信 光纤延迟线
相关文章