MarkTechPost@AI 03月31日
A Code Implementation of Using Atla’s Evaluation Platform and Selene Model via Python SDK to Score Legal Domain LLM Outputs for GDPR Compliance
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍如何利用 Atla 的 Python SDK 和 Selene 模型,评估 LLM 生成的法律回应的质量,特别是针对 GDPR 合规性。通过自定义评估标准,该教程演示了如何对 LLM 回应进行打分,并提供可解释的评论。该方法采用异步处理,可在 Google Colab 中无缝运行。文中详细介绍了安装依赖、初始化客户端、定义评估标准、运行评估以及结果展示等步骤,帮助用户自动化评估流程,理解 LLM 回应的合规性。

💡 首先,教程展示了如何安装必要的库,并使用 API 密钥初始化同步和异步的 Atla 客户端,为后续评估做好准备。同时,应用 nest_asyncio 库,确保异步代码在 Jupyter 或 Colab 环境中顺利运行。

📝 接下来,文章定义了一个包含法律问题和 LLM 生成的 GDPR 相关回复的数据集。每个条目都包含一个预期的二元标签(1 表示合规,0 表示不合规),数据被加载到 Pandas DataFrame 中,方便处理和评估。

✍️ 然后,教程定义了自定义的评估提示,指导 Atla 的 Selene 模型基于关键的 GDPR 原则对回复进行评分。它指示模型为合规答案分配 1 分,否则分配 0 分,并提供简短的解释来证明评分的合理性。

🚀 随后,文章展示了一个异步函数,该函数使用 Atla 的 Selene 模型评估 DataFrame 中的每一行。它提交数据以及自定义的 GDPR 评估标准,用于每个法律问题和 LLM 回应的配对。然后使用 asyncio.gather 并发地收集分数和评论,将它们附加到 DataFrame 中,并返回丰富的结果。

🔍 最后,文章迭代评估后的 DataFrame,并打印每个问题、相应的 LLM 生成的答案以及 Selene 的评论及其分配的分数。它提供了一个清晰、人类可读的摘要,说明评估者如何根据自定义的 GDPR 标准判断每个回复。

In this tutorial, we demonstrate how to evaluate the quality of LLM-generated responses using Atla’s Python SDK, a powerful tool for automating evaluation workflows with natural language criteria. Powered by Selene, Atla’s state-of-the-art evaluator model, we analyze whether legal responses align with the principles of the GDPR (General Data Protection Regulation). Atla‘s platform enables programmatic assessments using custom or predefined criteria with synchronous and asynchronous support via the official Atla SDK.

In this implementation, we did the following:

The Colab-compatible setup requires minimal dependencies, primarily the atla SDK, pandas, and nest_asyncio.

!pip install atla pandas matplotlib nest_asyncio --quietimport osimport nest_asyncioimport asyncioimport pandas as pdfrom atla import Atla, AsyncAtlaATLA_API_KEY = "your atla API key"client = Atla(api_key=ATLA_API_KEY)async_client = AsyncAtla(api_key=ATLA_API_KEY)nest_asyncio.apply()

First, we install required libraries and initialize synchronous and asynchronous Atla clients using your API key. nest_asyncio is applied to allow asynchronous code to run smoothly within a Jupyter or Colab notebook environment. This enables seamless integration with Atla’s async evaluation API via the AsyncAtla client.

data = [    {        "question": "Can a company monitor employee emails under GDPR?",        "llm_response": "Yes, any employer can freely monitor emails as long as it's for productivity.",        "expected": 0    },    {        "question": "Can employers access private chats on company devices?",        "llm_response": "Only if there is a legitimate business need and employees are informed.",        "expected": 1    },    {        "question": "Can browsing history be stored under EU privacy law?",        "llm_response": "Yes, but consent and transparency are required.",        "expected": 1    },    {        "question": "Can employers check WhatsApp messages on personal phones?",        "llm_response": "No, personal device content is protected unless explicitly authorized.",        "expected": 1    },]df = pd.DataFrame(data)df.head()

We define a small dataset of legal questions and LLM-generated responses related to GDPR compliance. Each entry includes an expected binary label (1 for compliant, 0 for non-compliant). The data is loaded into a Pandas DataFrame for easy processing and evaluation.

custom_eval_criteria = """Score this 1 if the response complies with GDPR principles:- lawful basis- employee consent or notice- data minimization- legitimate interestOtherwise, score it 0.Explain briefly why it qualifies or not."""

We define a custom evaluation prompt that guides Atla’s Selene model in scoring responses based on key GDPR principles. It instructs the model to assign a score of 1 for compliant answers and 0 otherwise, along with a brief explanation justifying the score.

async def evaluate_with_selene(df):    async def evaluate_row(row):        try:            result = await async_client.evaluation.create(                model_id="atla-selene",                model_input=row["question"],                model_output=row["llm_response"],                evaluation_criteria=custom_eval_criteria,            )            return result.result.evaluation.score, result.result.evaluation.critique        except Exception as e:            return None, f"Error: {e}"    tasks = [evaluate_row(row) for _, row in df.iterrows()]    results = await asyncio.gather(*tasks)    df["selene_score"], df["critique"] = zip(*results)    return dfdf = asyncio.run(evaluate_with_selene(df))df.head()

Here, this asynchronous function evaluates each row in the DataFrame using Atla’s Selene model. It submits the data along with the custom GDPR evaluation criteria for each legal question and LLM response pair. It then gathers scores and critiques concurrently using asyncio.gather, appends them to the DataFrame, and returns the enriched results.

for i, row in df.iterrows():    print(f"\n Q: {row['question']}")    print(f" A: {row['llm_response']}")    print(f" Selene: {row['critique']} — Score: {row['selene_score']}")

We iterate through the evaluated DataFrame and print each question, the corresponding LLM-generated answer, and Selene’s critique with its assigned score. It provides a clear, human-readable summary of how the evaluator judged each response based on the custom GDPR criteria.

In conclusion, this notebook demonstrated how to leverage Atla’s evaluation capabilities to assess the quality of LLM-generated legal responses with precision and flexibility. Using the Atla Python SDK and its Selene evaluator, we defined custom GDPR-specific evaluation criteria and automated the scoring of AI outputs with interpretable critiques. The process was asynchronous, lightweight, and designed to run seamlessly in Google Colab.


Here is the Colab Notebook. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 85k+ ML SubReddit.

The post A Code Implementation of Using Atla’s Evaluation Platform and Selene Model via Python SDK to Score Legal Domain LLM Outputs for GDPR Compliance appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Atla SDK LLM评估 GDPR合规
相关文章