MarkTechPost@AI 03月25日 13:47
Qwen Releases the Qwen2.5-VL-32B-Instruct: A 32B Parameter VLM that Surpasses Qwen2.5-VL-72B and Other Models like GPT-4o Mini
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Qwen团队发布了Qwen2.5-VL-32B-Instruct,这是一个320亿参数的视觉语言模型(VLM)。该模型在性能上超越了其前身Qwen2.5-VL-72B,以及GPT-4o Mini等模型,并且以Apache 2.0许可证开源。Qwen2.5-VL-32B-Instruct在视觉理解、智能体能力、视频理解、物体定位和结构化输出生成方面都有显著增强,在MMMU、MathVista、OCRBenchV2和Android Control等多个基准测试中表现出色,同时在文本任务如MMLU、MATH和HumanEval上也展现出竞争力。该模型的发布旨在推动AI领域的创新和应用,特别是在需要细致的多模态理解的领域。

👁️‍🗨️ 视觉理解能力:Qwen2.5-VL-32B-Instruct擅长识别图像中的物体,并分析文本、图表、图标、图形和布局。

🤖 智能体功能:该模型具备动态视觉智能体功能,能够推理并操控工具,进行计算机和手机交互。

🎬 视频理解:模型能够理解时长超过一小时的视频,并精确定位相关片段,展现了先进的时间定位能力。

📍 物体定位:它通过生成边界框或点来准确识别图像中的物体,并提供稳定的JSON输出,包含坐标和属性信息。

📊 结构化输出生成:该模型支持结构化输出,例如发票、表格等数据,这对于金融和商业应用非常有益。

​In the evolving field of artificial intelligence, vision-language models (VLMs) have become essential tools, enabling machines to interpret and generate insights from both visual and textual data. Despite advancements, challenges remain in balancing model performance with computational efficiency, especially when deploying large-scale models in resource-limited settings.​

Qwen has introduced the Qwen2.5-VL-32B-Instruct, a 32-billion-parameter VLM that surpasses its larger predecessor, the Qwen2.5-VL-72B, and other models like GPT-4o Mini, while being released under the Apache 2.0 license. This development reflects a commitment to open-source collaboration and addresses the need for high-performing yet computationally manageable models.​

Technically, the Qwen2.5-VL-32B-Instruct model offers several enhancements:​

These features enhance the model’s applicability across various domains requiring nuanced multimodal understanding. ​

Empirical evaluations highlight the model’s strengths:​

These results underscore the model’s balanced proficiency across diverse tasks. ​

In conclusion, the Qwen2.5-VL-32B-Instruct represents a significant advancement in vision-language modeling, achieving a harmonious blend of performance and efficiency. Its open-source availability under the Apache 2.0 license encourages the global AI community to explore, adapt, and build upon this robust model, potentially accelerating innovation and application across various sectors.


Check out the Model Weights. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 85k+ ML SubReddit.

The post Qwen Releases the Qwen2.5-VL-32B-Instruct: A 32B Parameter VLM that Surpasses Qwen2.5-VL-72B and Other Models like GPT-4o Mini appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Qwen2.5-VL-32B-Instruct 视觉语言模型 VLM 开源
相关文章