MarkTechPost@AI 03月10日
A Coding Implementation of Web Scraping with Firecrawl and AI-Powered Summarization Using Google Gemini
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了如何利用Firecrawl进行网页抓取,并结合Google Gemini等AI模型处理提取的数据,构建一个端到端的自动化工作流程。通过在Google Colab中集成这些工具,可以高效地抓取网页,提取关键内容,并使用先进的语言模型生成简洁的摘要。该方案适用于自动化研究、从文章中提取见解以及构建AI驱动的应用,提供了一个强大且适应性强的解决方案。

🚀 **Firecrawl网页抓取**: 使用Firecrawl从网页中提取结构化数据,例如从维基百科页面抓取Python编程语言相关内容,并以Markdown格式存储,方便后续处理。

🔑 **API密钥安全管理**: 通过getpass()函数安全地获取并存储Firecrawl和Google Gemini的API密钥,避免明文显示,保证数据安全。

🤖 **Gemini AI摘要生成**: 使用Google Gemini 1.5 Pro模型对抓取的网页内容进行摘要生成,限制输入文本长度在4000字符以内,确保符合API限制,最终生成简洁的AI摘要。

🛠️ **端到端自动化流程**: 结合Firecrawl和Google Gemini,创建了一个自动化流程,能够高效地抓取网页内容并生成有意义的摘要,适用于NLP应用、研究自动化和内容聚合等多种场景。

The rapid growth of web content presents a challenge for efficiently extracting and summarizing relevant information. In this tutorial, we demonstrate how to leverage Firecrawl for web scraping and process the extracted data using AI models like Google Gemini. By integrating these tools in Google Colab, we create an end-to-end workflow that scrapes web pages, retrieves meaningful content, and generates concise summaries using state-of-the-art language models. Whether you want to automate research, extract insights from articles, or build AI-powered applications, this tutorial provides a robust and adaptable solution.

!pip install google-generativeai firecrawl-py

First, we install google-generativeai firecrawl-py, which installs two essential libraries required for this tutorial. google-generativeai provides access to Google’s Gemini API for AI-powered text generation, while firecrawl-py enables web scraping by fetching content from web pages in a structured format.

import osfrom getpass import getpass# Input your API keys (they will be hidden as you type)os.environ["FIRECRAWL_API_KEY"] = getpass("Enter your Firecrawl API key: ")

Then we securely set the Firecrawl API key as an environment variable in Google Colab. It uses getpass() to prompt the user for the API key without displaying it, ensuring confidentiality. Storing the key in os.environ allows seamless authentication for Firecrawl’s web scraping functions throughout the session.

from firecrawl import FirecrawlAppfirecrawl_app = FirecrawlApp(api_key=os.environ["FIRECRAWL_API_KEY"])targeturl = "https://en.wikipedia.org/wiki/Python(programming_language)"result = firecrawl_app.scrape_url(target_url)page_content = result.get("markdown", "")print("Scraped content length:", len(page_content))

We initialize Firecrawl by creating a FirecrawlApp instance using the stored API key. It then scrapes the content of a specified webpage (in this case, Wikipedia’s Python programming language page) and extracts the data in Markdown format. Finally, it prints the length of the scraped content, allowing us to verify successful retrieval before further processing.

import google.generativeai as genaifrom getpass import getpass# Securely input your Gemini API KeyGEMINI_API_KEY = getpass("Enter your Google Gemini API Key: ")genai.configure(api_key=GEMINI_API_KEY)

We initialize Google Gemini API by securely capturing the API key using getpass(), preventing it from being displayed in plain text. The genai.configure(api_key=GEMINI_API_KEY) command sets up the API client, allowing seamless interaction with Google’s Gemini AI for text generation and summarization tasks. This ensures secure authentication before making requests to the AI model.

for model in genai.list_models():    print(model.name)

We iterate through the available models in Google Gemini API using genai.list_models() and print their names. This helps users verify which models are accessible with their API key and select the appropriate one for tasks like text generation or summarization. If a model is not found, this step aids debugging and choosing an alternative.

model = genai.GenerativeModel("gemini-1.5-pro")response = model.generate_content(f"Summarize this:\n\n{page_content[:4000]}")print("Summary:\n", response.text)

Finally, we initialize the Gemini 1.5 Pro model using genai.GenerativeModel(“gemini-1.5-pro”) sends a request to generate a summary of the scraped content. It limits the input text to 4,000 characters to stay within API constraints. The model processes the request and returns a concise summary, which is then printed, providing a structured and AI-generated overview of the extracted webpage content.

In conclusion, by combining Firecrawl and Google Gemini, we have created an automated pipeline that scrapes web content and generates meaningful summaries with minimal effort. This tutorial showcased multiple AI-powered solutions, allowing flexibility based on API availability and quota constraints. Whether you’re working on NLP applications, research automation, or content aggregation, this approach enables efficient data extraction and summarization at scale.


Here is the Colab Notebook. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 80k+ ML SubReddit.

Meet Parlant: An LLM-first conversational AI framework designed to provide developers with the control and precision they need over their AI customer service agents, utilizing behavioral guidelines and runtime supervision. It’s operated using an easy-to-use CLI and native client SDKs in Python and TypeScript .

The post A Coding Implementation of Web Scraping with Firecrawl and AI-Powered Summarization Using Google Gemini appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Firecrawl Google Gemini 网页抓取 AI摘要 自动化
相关文章