智源社区 03月04日
AI最前沿 | 机器视觉、机器人、神经网络、反事实学习、小样本信息网络...
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Machine Intelligence Research (MIR) 2025年第一期已于2月正式出版,本期包含13篇最新的研究论文和综述文章,内容涵盖了机器视觉、图神经网络、小样本信息网络等多个前沿领域。其中,既有针对特定应用的深度强化学习方法,如异构机器人系统中的目标搜索与导航,也有对通用问题求解的尝试,如社交问题的自动解决方案生成。此外,还涉及了多任务图神经网络的改进、文本分类的新策略以及用户登出预测等多个方面的研究进展。所有文章均可免费下载阅读。

🤖 机器人技术:针对采摘机器人的机器视觉关键技术进行了综述和基准测试,为该领域的研究和应用提供了参考。

🧠 图学习:对图上的反事实学习进行了全面的综述,并探讨了其在不同领域的应用。

🔬 分割技术:提出了一种边缘感知特征聚合网络,用于息肉分割,提高了分割的准确性和效率。

🧬 分子预测:通过缺失标签插补改进了用于分子属性预测的多任务图神经网络,提升了预测性能。

Machine Intelligence Research

MIR 2025年第一期已于2月正式出版,13篇最新好文免费下载,欢迎阅读!

卷首语

Tieniu Tan

https://link.springer.com/article/10.1007/s11633-024-1540-2

https://www.mi-research.net/article/doi/10.1007/s11633-024-1540-2

综述

Key Technologies for Machine Vision for Picking Robots: Review and Benchmarking

Xu Xiao, Yiming Jiang, Yaonan Wang

https://link.springer.com/article/10.1007/s11633-024-1517-1

https://www.mi-research.net/article/doi/10.1007/s11633-024-1517-1

综述

Counterfactual Learning on Graphs: A Survey

Zhimeng Guo, Zongyu Wu, Teng Xiao, Charu Aggarwal, Hui Liu, Suhang Wang

https://link.springer.com/article/10.1007/s11633-024-1519-z

https://www.mi-research.net/article/doi/10.1007/s11633-024-1519-z

综述

A Comprehensive Survey of Few-shot Information Networks

Xinxin Zheng, Feihu Che, Jianhua Tao

https://link.springer.com/article/10.1007/s11633-023-1470-4

https://www.mi-research.net/article/doi/10.1007/s11633-023-1470-4

研究论文

Target Search and Navigation in Heterogeneous Robot Systems with Deep Reinforcement Learning

Yun Chen, Jiaping Xiao

https://link.springer.com/article/10.1007/s11633-024-1512-6

https://www.mi-research.net/article/doi/10.1007/s11633-024-1512-6

 

研究论文

 

Unveiling the Hidden Interactions Among Features: A Heterogeneous Graph Approach for Personality Prediction

Yuxuan Song, Yilin Wu, Qiudan Li, Liping Chen, Daniel Zeng

https://link.springer.com/article/10.1007/s11633-024-1495-3

https://www.mi-research.net/article/doi/10.1007/s11633-024-1495-3

 

研究论文

 

Edge-aware Feature Aggregation Network for Polyp Segmentation

Tao Zhou, Yizhe Zhang, Geng Chen, Yi Zhou, Ye Wu, Deng-Ping Fan

https://link.springer.com/article/10.1007/s11633-023-1479-8

https://www.mi-research.net/article/doi/10.1007/s11633-023-1479-8

 

研究论文

End-to-end Identification of Autoregressive with Exogenous Input (ARX) Models Using Neural Networks

Aoxiang Dong, Andrew Starr, Yifan Zhao

https://link.springer.com/article/10.1007/s11633-024-1523-3

https://www.mi-research.net/article/doi/10.1007/s11633-024-1523-3

研究论文

Improving Multi-task GNNs for Molecular Property Prediction via Missing Label Imputation

Fenyu Hu, Dingshuo Chen, Qiang Liu, Shu Wu

https://link.springer.com/article/10.1007/s11633-023-1443-7

https://www.mi-research.net/article/doi/10.1007/s11633-023-1443-7

研究论文

General Automatic Solution Generation for Social Problems

Tong Niu, Haoyu Huang, Yu Du, Weihao Zhang, Luping Shi, Rong Zhao

https://link.springer.com/article/10.1007/s11633-024-1496-2

https://www.mi-research.net/article/doi/10.1007/s11633-024-1496-2

研究论文

Prioritization Hindsight Experience Based on Spatial Position Attention for Robots

Ye Yuan, Yu Sha, Feixiang Sun, Haofan Lu, Shuiping Gou, Jie Luo

https://link.springer.com/article/10.1007/s11633-023-1467-z

https://www.mi-research.net/article/doi/10.1007/s11633-023-1467-z

研究论文

Neural Network Based on Inter-layer Perturbation Strategy for Text Classification

Nai Zhou, Nianmin Yao, Qibin Li

https://link.springer.com/article/10.1007/s11633-024-1490-8

https://www.mi-research.net/article/doi/10.1007/s11633-024-1490-8

研究论文

Adaptive VDI Session Placement via User Logoff Prediction

Wenping Fan, Puhui Meng, Yu Tian, Min-Ling Zhang, Yao Zhang

https://link.springer.com/article/10.1007/s11633-023-1468-y

https://www.mi-research.net/article/doi/10.1007/s11633-023-1468-y

内容中包含的图片若涉及版权问题,请及时与我们联系删除

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Machine Intelligence Research 人工智能 机器学习 机器人 图神经网络
相关文章