本期的 19 篇论文如下:
[00:23] ? Self-rewarding correction for mathematical reasoning(自我奖励的数学推理校正)
[01:03] ? MedVLM-R1: Incentivizing Medical Reasoning Capability of Vision-Language Models (VLMs) via Reinforcement Learning(MedVLM-R1:通过强化学习激励视觉语言模型的医疗推理能力)
[01:53] ? R2-T2: Re-Routing in Test-Time for Multimodal Mixture-of-Experts(R2-T2:测试时重路由在多模态专家混合模型中的应用)
[02:34] ? LongRoPE2: Near-Lossless LLM Context Window Scaling(LongRoPE2:近乎无损的LLM上下文窗口扩展)
[03:11] ? FINEREASON: Evaluating and Improving LLMs' Deliberate Reasoning through Reflective Puzzle Solving(FINEREASON:通过反思性谜题解决评估和改进大语言模型的深思熟虑推理)
[04:02] ? CODESYNC: Synchronizing Large Language Models with Dynamic Code Evolution at Scale(CODESYNC:大规模动态代码演化与大型语言模型同步)
[04:48] ? Lean and Mean: Decoupled Value Policy Optimization with Global Value Guidance(精简与高效:基于全局价值引导的解耦价值策略优化)
[05:33] ? UniTok: A Unified Tokenizer for Visual Generation and Understanding(UniTok:面向视觉生成与理解的统一分词器)
[06:12] ? NeoBERT: A Next-Generation BERT(NeoBERT:下一代BERT)
[06:47] ? FlexiDiT: Your Diffusion Transformer Can Easily Generate High-Quality Samples with Less Compute(FlexiDiT:让你的扩散Transformer轻松生成高质量样本,计算量更少)
[07:30] ? SoRFT: Issue Resolving with Subtask-oriented Reinforced Fine-Tuning(SoRFT:面向子任务的强化微调问题解决方法)
[08:07] ? Building Interactable Replicas of Complex Articulated Objects via Gaussian Splatting(基于高斯样条构建复杂 articulated 物体的交互式副本)
[08:45] ? Multimodal Representation Alignment for Image Generation: Text-Image Interleaved Control Is Easier Than You Think(多模态表示对齐用于图像生成:文本-图像交错控制比你想象的更简单)
[09:30] ? Mobius: Text to Seamless Looping Video Generation via Latent Shift(Mobius:通过潜在位移从文本生成无缝循环视频)
[10:08] ? Guardians of the Agentic System: Preventing Many Shots Jailbreak with Agentic System(代理系统守护者:通过代理系统防止多次越狱)
[10:49] ? R1-T1: Fully Incentivizing Translation Capability in LLMs via Reasoning Learning(通过推理学习全面激励大语言模型中的翻译能力)
[11:29] ? On Relation-Specific Neurons in Large Language Models(关于大型语言模型中的关系特定神经元)
[12:05] ? Training Consistency Models with Variational Noise Coupling(基于变分噪声耦合的训练一致性模型)
[12:46] ⚡ Efficient Gaussian Splatting for Monocular Dynamic Scene Rendering via Sparse Time-Variant Attribute Modeling(通过稀疏时变属性建模实现单目动态场景渲染的高效高斯光栅化)

【关注我们】
您还可以在以下平台找到我们,获得播客内容以外更多信息
小红书: AI速递