MarkTechPost@AI 2024年06月27日
Hugging Face Releases Open LLM Leaderboard 2: A Major Upgrade Featuring Tougher Benchmarks, Fairer Scoring, and Enhanced Community Collaboration for Evaluating Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Hugging Face has announced the release of the Open LLM Leaderboard v2, a significant upgrade designed to address the challenges and limitations of its predecessor. The new leaderboard introduces more rigorous benchmarks, refined evaluation methods, and a fairer scoring system, promising to reinvigorate the competitive landscape for language models.

Addressing Benchmark Saturation

Over the past year, the original Open LLM Leaderboard became a pivotal resource in the machine learning community, attracting over 2 million unique visitors and engaging 300,000 active monthly users. Despite its success, the escalating performance of models led to benchmark saturation. Models began to reach baseline human performance on benchmarks like HellaSwag, MMLU, and ARC, reducing their effectiveness in distinguishing model capabilities. Additionally, some models exhibited signs of contamination, having been trained on data similar to the benchmarks, which compromised the integrity of their scores.

Introduction of New Benchmarks

To counter these issues, the Open LLM Leaderboard v2 introduces six new benchmarks that cover a range of model capabilities:

Fairer Rankings with Normalized Scoring

A notable change in the new leaderboard is the adoption of normalized scores for ranking models. Previously, raw scores were summed, which could misrepresent performance due to varying benchmark difficulties. Now, scores are normalized between a random baseline (0 points) and the maximal possible score (100 points). This approach ensures a fairer comparison across different benchmarks, preventing any single benchmark from disproportionately influencing the final ranking.

For example, in a benchmark with two choices per question, a random baseline would score 50 points. This raw score would be normalized to 0, aligning scores between benchmarks and providing a clearer picture of model performance.

Enhanced Reproducibility and Interface

Hugging Face has updated the evaluation suite in collaboration with EleutherAI to improve reproducibility. The updates include support for delta weights (LoRA fine-tuning/adaptation), a new logging system compatible with the leaderboard, and using chat templates for evaluation. Additionally, manual checks were conducted on all implementations to ensure consistency and accuracy. The interface has also been significantly enhanced. Thanks to the Gradio team, notably Freddy Boulton, the new Leaderboard component loads data on the client side, making searches and column selections instantaneous. This improvement provides users with a faster and more seamless experience.

Prioritizing Community-Relevant Models

The new leaderboard introduces a “maintainer’s choice” category highlighting high-quality models from various sources, including major companies, startups, collectives, and individual contributors. This curated list aims to include state-of-the-art LLMs and prioritize evaluations of the most useful models for the community.

Voting on Model Relevance

A voting system has been implemented to manage the high volume of model submissions. Community members can vote for their preferred models, and those with the most votes will be prioritized for evaluation. This system ensures that the most anticipated models are evaluated first, reflecting the community’s interests.

In conclusion, the Open LLM Leaderboard v2 by Hugging Face represents a major milestone in evaluating language models. With its more challenging benchmarks, fairer scoring system, and improved reproducibility, it aims to push the boundaries of model development and provide more reliable insights into model capabilities. The Hugging Face team is optimistic about the future, expecting continued innovation and improvement as more models are evaluated on this new, more rigorous leaderboard.


Check out the Leaderboard and Details. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter

Join our Telegram Channel and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our 45k+ ML SubReddit


Create, edit, and augment tabular data with the first compound AI system, Gretel Navigator, now generally available! [Advertisement]

The post Hugging Face Releases Open LLM Leaderboard 2: A Major Upgrade Featuring Tougher Benchmarks, Fairer Scoring, and Enhanced Community Collaboration for Evaluating Language Models appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

相关文章