本期的 21 篇论文如下:
[00:25] ? Competitive Programming with Large Reasoning Models(使用大型推理模型进行编程竞赛)
[01:03] ? CodeI/O: Condensing Reasoning Patterns via Code Input-Output Prediction(代码输入输出:通过代码输入输出预测凝练推理模式)
[01:47] ? Magic 1-For-1: Generating One Minute Video Clips within One Minute(魔幻1对1:在一分钟内生成一分钟视频片段)
[02:27] ? Teaching Language Models to Critique via Reinforcement Learning(通过强化学习教授语言模型进行批判)
[03:09] ? Expect the Unexpected: FailSafe Long Context QA for Finance(预料之外:金融领域长上下文问答的FailSafe)
[03:49] ? Scaling Pre-training to One Hundred Billion Data for Vision Language Models(视觉语言模型预训练扩展至千亿级数据)
[04:24] ? LLMs Can Easily Learn to Reason from Demonstrations Structure, not content, is what matters!(大模型能够轻松从示范结构中学习推理,内容不是关键!)
[05:07] ? Enhancing Financial Time-Series Forecasting with Retrieval-Augmented Large Language Models(通过检索增强的大型语言模型提升金融时间序列预测)
[05:50] ? Éclair -- Extracting Content and Layout with Integrated Reading Order for Documents(Éclair -- 提取文档内容的集成阅读顺序)
[06:34] ? Hephaestus: Improving Fundamental Agent Capabilities of Large Language Models through Continual Pre-Training(赫菲斯托斯:通过持续预训练提升大型语言模型的基础代理能力)
[07:15] ? CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing(CAD编辑器:基于文本指令的CAD编辑框架及自动训练数据合成)
[08:10] ? Enhance-A-Video: Better Generated Video for Free(增强视频:免费生成更高质量的视频)
[08:49] ? NatureLM: Deciphering the Language of Nature for Scientific Discovery(NatureLM:解密科学发现的自然语言)
[09:34] ? Forget What You Know about LLMs Evaluations - LLMs are Like a Chameleon(忘掉你对LLM评估的认知 - LLM就像变色龙)
[10:22] ? VidCRAFT3: Camera, Object, and Lighting Control for Image-to-Video Generation(VidCRAFT3:图像到视频生成的相机、物体与光照控制)
[11:01] ? CoS: Chain-of-Shot Prompting for Long Video Understanding(CoS:长视频理解的链式镜头提示)
[11:42] ? Mask-Enhanced Autoregressive Prediction: Pay Less Attention to Learn More(掩码增强的自回归预测:少关注以学更多)
[12:28] ? FocalCodec: Low-Bitrate Speech Coding via Focal Modulation Networks(FocalCodec:通过焦点调制网络实现低比特率语音编码)
[13:09] ? Auditing Prompt Caching in Language Model APIs(语言模型API中的提示缓存审计)
[13:49] ? Gemstones: A Model Suite for Multi-Faceted Scaling Laws(宝石:多面性缩放定律的模型套件)
[14:32] ? Skill Expansion and Composition in Parameter Space(参数空间中的技能扩展与组合)

【关注我们】
您还可以在以下平台找到我们,获得播客内容以外更多信息
小红书: AI速递