36kr 02月11日
推理模型新路线开源,与DeepSeek截然不同,抛弃思维链不用人类语言思考
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

新型开源推理大模型Huginn采用与Deepseek-R1/OpenAI o1截然不同的架构,它抛弃了长思维链和人类语言,转而直接在高维潜空间用隐藏状态进行推理。这种新模型能自适应地分配计算资源,从而在需要时花费更多时间进行思考。研究表明,该模型在处理如“Claire每天早餐吃3个鸡蛋的煎蛋卷,4周内会吃多少鸡蛋?”这类问题时,会对关键数字token(如“3”)不断旋转,最终收敛到正确答案。由于不依赖长思维链,该方法无需专门的训练数据,能在小上下文窗口下工作,并捕捉难以用语言表达的推理类型。该模型由马克思普朗克研究所等团队使用AMD GPU节点完成训练。

💡Huginn采用全新架构,有别于传统Transformer,它包含前奏(Prelude)、循环块(Recurrent Block)和尾声(Coda)三部分,通过循环计算单元在潜在空间中修改状态,实现推理。

🔄 模型在训练时,为每个输入序列分配随机迭代次数,并通过反向传播循环单元的最后k次迭代,降低计算和内存需求。

📊 Huginn模型在潜在空间中的推理轨迹显示,对于简单token,隐状态会快速收敛;对于关键token,则形成复杂的圆形轨道;而某些token的隐状态则会沿特定方向“滑动”。

🧪 尽管Huginn只有3.5B参数,且未经过post/mid-training,但其性能可与7B参数、在2-3T tokens数据上训练的开源模型相媲美,这归功于循环模块中的计算优势。

开源推理大模型新架构来了,采用与Deepseek-R1/OpenAI o1截然不同的路线

抛弃长思维链和人类的语言,直接在连续的高维潜空间用隐藏状态推理,可自适应地花费更多计算来思考更长时间。

例如问题:Claire每天早餐都会做一个3个鸡蛋的煎蛋卷。她在4周内会吃多少个鸡蛋?

从新模型Huginn的思考轨迹可视化中,可以看到对数字3等重要token不断旋转,最终收敛到正确答案对应的位置,但在不关键的人物名字Cla-ire上没有这个现象。

除旋转之外还能观察到更多丰富的几何模式,研究团队认为这表明该模型正在独立学习利用潜空间的高维性质以新的方式做推理

由于不使用长思维链推理范式,新方法还有几个额外优势:

研究来自马克思普朗克研究所、马里兰大学等团队,他们使用美国橡树岭实验室的Frontier超算完成训练实验,用到8个AMD GPU节点(4096块GPU),没有使用英伟达体系。

新架构给Transformer加入循环模块

新架构仍然围绕Decoder-only的Transformer block构建,但分为三段:

Prelude(前奏):使用多个transformer层将输入数据嵌入到潜空间中

Recurrent Block(循环块):循环计算单元,在潜在空间中修改状态

Coda(尾声):从潜空间解码,并包含模型的预测头

在训练期间为每个输入序列分配随机数量的迭代次数。同时为了在训练时保持较低的计算和内存,只反向传播循环单元的最后k次迭代。

研究中可视化了模型在潜在空间中的推理轨迹,发现了这些有趣现象:

对一些简单token,模型的隐状态会快速收敛到稳定点

但对一些关键token,如数学问题中的数字”3”,隐状态会形成复杂的圆形轨道

还有一些token的隐状态会沿特定方向”滑动”,可能用于计数循环次数

论文一作Jonas Geiping透露,他们的算力只够一次大规模训练,也就是最后发布的3.5B参数的Huginn模型,在800B tokens数据上预训练。

没有post/mid-training过程,但可以与7B参数、在2-3T tokens数据上训练的开源模型能力相匹配。

另外算上循环模块中的计算,3.5B参数的模型训练时的计算量相当于传统的32B模型。

有人猜测OpenAI o3使用了类似的方法,通过循环来达到近似无限上下文,并且控制高中低三种推理时间设置。

有OpenAI研究员已经注意到这个工作,把论文读完了还在线捉bug。

也已经有人准备根据DeepSeek-R1开源的方法尝试新思路,同时保留潜空间思考的推理能力,和CoT思考的可读性。

论文:https://arxiv.org/abs/2502.05171

模型:https://huggingface.co/tomg-group-umd/huginn-0125

代码:https://github.com/seal-rg/recurrent-pretraining

参考链接:

[1]https://x.com/tomgoldsteincs/status/1888980680790393085

[2]https://x.com/jonasgeiping/status/1888985929727037514

本文来自微信公众号“量子位”,作者:梦晨,36氪经授权发布。

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

开源模型 推理架构 潜空间 循环模块
相关文章