少点错误 02月11日
Notes on Occam via Solomonoff vs. hierarchical Bayes
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章探讨了在贝叶斯框架下如何更好地理解和运用简单性原则。传统上,Solomonoff归纳法(SI)被认为是编码简单性偏见的理想方式,但文章作者对此并不完全满意,并提出了通过分层贝叶斯结构来获得这种偏见的替代方法。该方法强调在最高层面上,不同的理论规定了基本本体,而更复杂的理论需要将先验概率分散到更多的假设上,从而降低了每个假设的先验概率。文章还讨论了这种观点的局限性,例如如何确定什么是高层理论,以及本体论在捕捉我们对简单性的直觉偏好中的作用。作者认为,如果我们要直接惩罚更复杂的假设,应该关注理论本体的简单性,而不是句法上的简单性。

💡**分层贝叶斯方法**:通过构建分层先验,在高层理论层面规定基本本体,使得复杂理论因包含更多假设而分散先验概率,从而降低单个假设的先验概率,以此体现对简单理论的偏好。

🤔**本体论的重要性**:相比于关注理论的句法简单性,作者认为更应该关注理论本体的简单性,即理论提出的实体数量和规律的统一性。这更贴近我们直觉上对简单理论的偏好。

⚖️**对Solomonoff归纳法的反思**:Solomonoff归纳法(SI)虽然形式严谨,但它只关注假设的句法,而忽略了假设实际描述的世界。作者认为,从本体论的角度思考可能有助于解决SI中语言选择的任意性问题。

Published on February 10, 2025 5:55 PM GMT

Crossposted from my Substack.

Intuitively, simpler theories are better all else equal. It also seems like finding a way to justify assigning higher prior probability to simpler theories is one of the more promising ways of approaching the problem of induction. In some places, Solomonoff induction (SI) seems to be considered the ideal way of encoding a bias towards simplicity. (Recall: under SI, hypotheses are computable functions that spit out observations. Hypothesis h gets prior probability proportional to 2-K(h; L), where K(h; L) is the hypothesis’ Kolmogorov complexity in language L.)

But I find SI pretty unsatisfying on its own, and think there might be a better approach (not original to me) to getting a bias towards simpler hypotheses in a Bayesian framework.

Simplicity via hierarchical Bayes

Syntax vs. ontology

References

Builes, David. 2022. “The Ineffability of Induction.” Philosophy and Phenomenological Research 104 (1): 129–49.

Henderson, Leah. 2014. “Bayesianism and Inference to the Best Explanation.” The British Journal for the Philosophy of Science 65 (4): 687–715.

Huemer, Michael. 2016. “Serious Theories and Skeptical Theories: Why You Are Probably Not a Brain in a Vat.” Philosophical Studies 173 (4): 1031–52.

Rasmussen, Carl, and Zoubin Ghahramani. 2000. “Occam’s Razor.” Advances in Neural Information Processing Systems 13. https://proceedings.neurips.cc/paper/2000/hash/0950ca92a4dcf426067cfd2246bb5ff3-Abstract.html.



Discuss

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

贝叶斯 简单性原则 Solomonoff归纳法 本体论
相关文章