本期的 20 篇论文如下:
[00:26] ? The Differences Between Direct Alignment Algorithms are a Blur(直接对齐算法的差异逐渐模糊)
[01:07] ? OmniHuman-1: Rethinking the Scaling-Up of One-Stage Conditioned Human Animation Models(OmniHuman-1:重新思考单阶段条件式人体动画模型的放大)
[01:48] ? Process Reinforcement through Implicit Rewards(基于隐式奖励的过程强化)
[02:36] ⚖ Preference Leakage: A Contamination Problem in LLM-as-a-judge(偏好泄露:LLM即评判器中的污染问题)
[03:14] ? SafeRAG: Benchmarking Security in Retrieval-Augmented Generation of Large Language Model(SafeRAG:评估大语言模型检索增强生成中的安全性)
[04:02] ? FastKV: KV Cache Compression for Fast Long-Context Processing with Token-Selective Propagation(FastKV:通过令牌选择性传播实现快速长文本处理的KV缓存压缩)
[04:50] ? AIN: The Arabic INclusive Large Multimodal Model(AIN:阿拉伯语包容性大型多模态模型)
[05:39] ? DeepRAG: Thinking to Retrieval Step by Step for Large Language Models(DeepRAG:面向大型语言模型的逐步思考检索)
[06:30] ? MM-IQ: Benchmarking Human-Like Abstraction and Reasoning in Multimodal Models(MM-IQ:多模态模型中类人抽象与推理能力的基准测试)
[07:19] ? Almost Surely Safe Alignment of Large Language Models at Inference-Time(大语言模型在推理时近乎完全安全的对齐)
[08:04] ? ZebraLogic: On the Scaling Limits of LLMs for Logical Reasoning(ZebraLogic:关于大型语言模型在逻辑推理中的扩展极限)
[08:49] ? The Jumping Reasoning Curve? Tracking the Evolution of Reasoning Performance in GPT-[n] and o-[n] Models on Multimodal Puzzles(跳跃的推理曲线?追踪GPT-[n]和o-[n]模型在多模态谜题上的推理性能演变)
[09:38] ? Improving Transformer World Models for Data-Efficient RL(改进Transformer世界模型以实现数据高效的强化学习)
[10:22] ? Improved Training Technique for Latent Consistency Models(改进的潜在一致性模型训练技术)
[11:07] ? Scaling Embedding Layers in Language Models(语言模型中扩展嵌入层)
[11:42] ? SliderSpace: Decomposing the Visual Capabilities of Diffusion Models(SliderSpace:解构扩散模型的视觉能力)
[12:24] ? PhD Knowledge Not Required: A Reasoning Challenge for Large Language Models(无需博士知识:大型语言模型的推理挑战)
[13:08] ? Lifelong Sequential Knowledge Editing without Model Degradation(终身序列知识编辑,且不降低模型性能)
[13:46] ? Current Pathology Foundation Models are unrobust to Medical Center Differences(当前病理学基础模型对于医疗中心差异不具有鲁棒性)
[14:37] ? A Study on the Performance of U-Net Modifications in Retroperitoneal Tumor Segmentation(U-Net改进模型在腹膜后肿瘤分割中的性能研究)

【关注我们】
您还可以在以下平台找到我们,获得播客内容以外更多信息
小红书: AI速递