少点错误 02月03日
"DL training == human learning" is a bad analogy
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章深入探讨了深度学习训练与人类学习之间的类比,并指出其不准确之处。文章认为,将深度学习训练比作人类学习是不恰当的,因为人类学习在很大程度上依赖于先天能力和极少的数据,而在某些方面,如语言和数学的学习上,人类的泛化能力远超深度学习模型。此外,人类大脑在非刻意思考层面并非通用的学习机器,许多认知能力似乎是天生的。文章进一步指出,人类心智的构建主要归功于进化,而非人类的学习过程本身。同样,深度学习模型的构建主要归功于深度学习过程本身,而非训练代码的编写。文章最后探讨了深度学习训练与生物进化的类比,并强调了两者在优化过程上的相似性。

🧠 人类学习与深度学习训练存在显著差异:人类在少量数据下高效学习,而深度学习模型则依赖海量数据。人类的泛化能力在某些领域超越深度学习模型。

🧬 人类认知能力多样性:许多认知能力如绝对音感和心理视觉似乎是先天存在的,并且可能无法通过后天学习获得,这显示了人类大脑的复杂性。

🤔 心智构建的功劳归属:人类心智的构建主要归功于进化,深度学习模型的心智构建主要归功于深度学习过程本身,而非训练代码的编写。

🎯 深度学习训练与生物进化的类比:尽管存在差异,但两者在优化过程中存在相似性,这有助于理解内部不一致性的存在。

Published on February 2, 2025 8:59 PM GMT

A more correct but less concise statement of the analogy might be DL training : DL training code :: human learning : human genome, read as "DL training is to DL training code what human learning is to the human genome". This is sometimes contrasted with an alternative analogy DL training : DL-based AGI :: evolution : human mind.

Why the analogy is bad

Human learning mostly doesn't look much like DL training:

The higher level problem with this analogy is how it misleadingly/incorrectly assigns credit to processes for the work of building minds. To me, it's clear from the above points that human learning is doing very little of the work of building human minds; evolution did most of that work. On the other hand, the writing of DL training code (at least in the current paradigm) does very little of the work in building the mind of a hypothetical DL-based AGI: the DL process itself is doing most of the work.

What about the "DL training == evolution" analogy?

DL training also doesn't look much like biological evolution in some ways (e.g. much less of an information bottleneck). The reason this analogy works for the specific purpose of establishing an existence proof of inner misalignment with an outer optimizer is that it correctly identifies the optimization process which is doing the bulk of the actual mind-building work in each case.



Discuss

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 人类学习 生物进化 认知能力 模型训练
相关文章