MarkTechPost@AI 01月17日
Chat with Your Documents Using Retrieval-Augmented Generation (RAG)
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了如何使用检索增强生成(RAG)技术构建一个能够与文档(如PDF)交互的聊天机器人。该教程使用Groq进行语言模型推理,Chroma作为向量存储,Gradio作为用户界面。通过RAG,聊天机器人可以从外部数据源获取相关信息,从而生成更准确和上下文相关的回答。文章详细讲解了从PDF提取文本、分割文本、创建向量存储、初始化语言模型,到构建会话检索链和用户界面的整个过程。最终,用户可以得到一个能够理解文档内容并进行对话的聊天机器人。

📚RAG技术原理: 检索增强生成(RAG)通过结合大型语言模型(LLM)的生成能力和实时数据检索,提高了LLM的准确性和信息时效性。

🛠️核心步骤: 包括从PDF提取文本,将长文本分割成小块,使用SentenceTransformerEmbeddings模型创建文本向量,并存储在Chroma向量数据库中。

🔗构建会话: 使用LangChain的ConversationalRetrievalChain连接语言模型和向量数据库,并维护对话历史,确保聊天机器人能理解上下文。

🖥️用户界面: 通过Gradio构建用户界面,用户可以通过文本框输入问题,并与聊天机器人进行交互。

Imagine having a personal chatbot that can answer questions directly from your documents—be it PDFs, research papers, or books. With Retrieval-Augmented Generation (RAG), this is not only possible but also straightforward to implement. In this tutorial, we’ll learn how to build a chatbot that interacts with your documents, like PDFs, using Retrieval-Augmented Generation (RAG). We’ll use Groq for language model inference, Chroma as the vector store, and Gradio for the user interface.

By the end, you’ll have a chatbot capable of answering questions directly from your documents, keeping context of your conversation, and providing concise, accurate answers.

What is Retrieval-Augmented Generation (RAG)?

Retrieval-Augmented Generation (RAG) is an AI architecture that enhances the capabilities of Large Language Models (LLMs) by integrating an information retrieval system. This system fetches relevant data from external sources, providing the LLM with grounded information to generate more accurate and contextually appropriate responses. By combining the generative abilities of LLMs with real-time data retrieval, RAG reduces inaccuracies and ensures up-to-date information in AI-generated content.

Prerequisites

    Python Installation: Ensure Python 3.9+ is installed on your system.Groq API Key: Sign up for a Groq account and generate an API key:
      Visit Groq Console.Navigate to API Keys and create a new key.Copy your API key for use in the project.

Dependencies: Install the required libraries:

pip install langchain langchain-community langchain-groq gradio sentence-transformers PyPDF2 chromadb

These libraries will help with language processing, building the user interface, model integration, PDF handling, and vector database management.

Downloading the PDF Resource

For this tutorial, we’ll use a publicly available PDF containing information about diseases, their symptoms, and cures. Download the PDF and save it in your project directory (you are free to use any pdf).

Step 1: Extracting Text from the PDF

We’ll use PyPDF2 to extract text from the PDF:

from PyPDF2 import PdfReaderdef extract_text_from_pdf(pdf_path):    reader = PdfReader(pdf_path)    text = ""    for page in reader.pages:        text += page.extract_text()    return textpdf_path = 'diseases.pdf'  # Replace with your PDF pathpdf_text = extract_text_from_pdf(pdf_path)

Step 2: Split the Text into Chunks

Long documents are divided into smaller, manageable chunks for processing.

from langchain.text_splitter import RecursiveCharacterTextSplitterdef split_text_into_chunks(text, chunk_size=2000, chunk_overlap=200):    text_splitter = RecursiveCharacterTextSplitter(        chunk_size=chunk_size,        chunk_overlap=chunk_overlap    )    return text_splitter.split_text(text)text_chunks = split_text_into_chunks(pdf_text)

Step 3: Create a Vector Store with Chroma

We’ll embed the text chunks using a pre-trained model and store them in a Chroma vector database.

from langchain.embeddings import SentenceTransformerEmbeddingsfrom langchain.vectorstores import Chromaembedding_model = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")vector_store = Chroma(    collection_name="disease_info",    embedding_function=embedding_model,    persist_directory="./chroma_db")vector_store.add_texts(texts=text_chunks)

Step 4: Initialize the Groq Language Model

To use Groq’s language model, set your API key and initialize the ChatGroq instance.

import osfrom langchain_groq import ChatGroqos.environ["GROQ_API_KEY"] = 'your_groq_api_key_here'  # Replace with your API keyllm = ChatGroq(model="mixtral-8x7b-32768", temperature=0.1)

Step 5: Create the Conversational Retrieval Chain

With LangChain’s ConversationalRetrievalChain, we can link the language model and the vector database.

from langchain.chains import ConversationalRetrievalChainretrieval_chain = ConversationalRetrievalChain.from_llm(    llm=llm,    retriever=vector_store.as_retriever(topk=3),    return_source_documents=True)

Step 6: Implement the Chatbot Logic

We define the logic for maintaining conversation history and generating responses.

conversation_history = []def get_response(user_query):    response = retrieval_chain({        "question": user_query,        "chat_history": conversation_history    })    conversation_history.append((user_query, response['answer']))    return response['answer']

Step 7: Build the User Interface with Gradio

Finally, create a Gradio interface to interact with the chatbot.

import gradio as grdef chat_interface(user_input, history):    response = get_response(user_input)    history.append((user_input, response))    return history, historywith gr.Blocks() as demo:    chatbot = gr.Chatbot()    state = gr.State([])    with gr.Row():        user_input = gr.Textbox(show_label=False, placeholder="Enter your question...")        submit_btn = gr.Button("Send")    submit_btn.click(chat_interface, inputs=[user_input, state], outputs=[chatbot, state])

Running the Code

Save the script as app.py and run

python app.py

Hurray! You are done. The Gradio interface will launch, allowing you to chat with your document.

But why stop here? You can go further by trying to build any of the following functionalities in the chatbot.

    Enhanced Vector Store: Use other vector databases like Milvus or Pinecone for scalability.Fine-tuned Models: Experiment with fine-tuned Groq models for domain-specific accuracy.Multi-Document Support: Extend the system to handle multiple documents.Better Context Handling: Refine conversational logic to better manage longer chat histories.Custom UI: Design a more polished user interface with advanced styling and features.

Congratulations! You’ve successfully built a document-based chatbot using Groq and LangChain. Experiment with improvements and build something amazing!

Resources:

    https://nios.ac.in/media/documents/SrSec314NewE/Lesson-29.pdfLangChain (https://www.langchain.com/)Groq (https://groq.com/)

Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 65k+ ML SubReddit.

Recommend Open-Source Platform: Parlant is a framework that transforms how AI agents make decisions in customer-facing scenarios. (Promoted)

The post Chat with Your Documents Using Retrieval-Augmented Generation (RAG) appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

RAG 聊天机器人 LangChain Groq 文档处理
相关文章