MarkTechPost@AI 01月08日
PyG-SSL: An Open-Source Library for Graph Self-Supervised Learning and Compatible with Various Deep Learning and Scientific Computing Backends
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

PyG-SSL是为解决图结构数据处理问题而开发的开源工具包,它旨在推进图自监督学习,克服现有方法的局限,具有多种关键特性并经过严格测试,在多个方面显示出有效性。

🧐PyG-SSL可标准化图SSL方法的实施与评估

🎯具有全面支持、模块化、含基准和数据集及性能优化等特点

💪经多数据集和SSL方法严格测试,能提升下游任务性能

Complex domains like social media, molecular biology, and recommendation systems have graph-structured data that consists of nodes, edges, and their respective features. These nodes and edges do not have a structured relationship, so addressing them using graph neural networks (GNNs) is essential. However, GNNs rely on labeled data, which is difficult and expensive to obtain. Self-supervised Learning (SSL) is an evolving methodology that leverages unlabelled data by generating its supervisory signals. SSL for graphs comes with its own challenges, such as domain specificity, lack of modularity, and steep learning curve. Addressing these issues, a team of researchers from the University of Illinois Urbana-Champaign, Wayne State University, and Meta AI have developed PyG-SSL, an open-source toolkit designed to advance graph self-supervised learning.

Current Graph Self-Supervised Learning (GSSL) approaches primarily focus on pretext (self-generated) tasks, graph augmentation, and contrastive learning. Pretext includes node-level, edge-level, and graph-level tasks that help the model learn useful representations without needing labeled data. Their augmentation occurs by dropping, maskin,g or shuffling, improving the model’s robustness and generalizability. However, existing GSSL frameworks are designed for specific applications and require significant customization. Moreover, developing and testing new SSL methods is time-intensive and error-prone without a modular and extensible framework. Therefore, a new process is needed to address the fragmented nature of existing GSSL implementations and the absence of a unified toolkit that restricts standardization and benchmarking across various GSSL methods. 

The proposed toolkit, PyG-SSL, standardizes the implementation and evaluation of graph SSL methods. The key features of PyG-SSL are:

This toolkit has been rigorously tested across multiple datasets and SSL methods, demonstrating its effectiveness in standardizing and advancing graph SSL research. With reference implementations of a wide range of SSL methods, PyG-SSL ensures that the results are reproducible and comparable in experiments. Experimental results demonstrate that integrating PyG-SSL into existing GNN architectures improves their performance on downstream tasks by properly exploiting unlabeled data.

PyG-SSL marks a significant milestone in graph self-supervised learning, addressing long-standing challenges related to standardization, reproducibility, and accessibility. PyG-SSL gives the possibility to attain state-of-the-art results through its unified, modular, and extensible toolkit, easing the development of innovative graph SSL methods. PyG-SSL can play a pivotal role in advancing graph-based machine learning applications across diverse domains in this fast-evolving field.


Check out the Paper and GitHub Page. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

FREE UPCOMING AI WEBINAR (JAN 15, 2025): Boost LLM Accuracy with Synthetic Data and Evaluation IntelligenceJoin this webinar to gain actionable insights into boosting LLM model performance and accuracy while safeguarding data privacy.

The post PyG-SSL: An Open-Source Library for Graph Self-Supervised Learning and Compatible with Various Deep Learning and Scientific Computing Backends appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

PyG-SSL 图自监督学习 开源工具包 性能优化
相关文章