魔搭ModelScope社区 2024年12月25日
Qwen开源视觉推理模型QVQ,更睿智地看世界!
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

QVQ是基于Qwen2-VL-72B构建的开源多模态推理模型,在MMMU评测中取得优异成绩,在视觉理解和复杂问题解决方面有重大突破,且在多个基准测试中表现出色,同时也介绍了其局限性、应用实践及微调方法等内容。

💡QVQ是基于Qwen2-VL-72B构建的多模态推理模型,在MMMU评测中获70.3分

📈在多个数学和科学相关基准测试中表现出色,缩小与领先模型差距

🚀展示了模型在视觉推理任务中的应用示例及多种应用最佳实践

⚠️存在语言混合、递归推理等模型局限性

2024-12-25 01:37 浙江

基于 Qwen2-VL-72B 构建的开源多模态推理模型,在 MMMU 评测中取得了 70.3 的优异成绩

在人类的思维中,语言和视觉紧密交织,塑造着我们感知和理解世界的方式。我们的推理能力深深植根于语言思维和视觉记忆之中。那么,当我们将这些能力赋予人工智能时,会发生什么呢?如今的大语言模型已经展现出卓越的推理能力,但我们不禁思考:它们能否通过掌握视觉理解的力量,攀登认知能力的新高峰?


设想一下,一个人工智能能够像物理学大师一样,面对复杂的物理问题,沉着冷静地通过逻辑推理找到解决方案。正是这样的愿景激发Qwen团队创造了 QVQ —— 一个基于 Qwen2-VL-72B 构建的开源多模态推理模型。QVQ 在人工智能的视觉理解和复杂问题解决能力方面实现了重大突破。在 MMMU 评测中,QVQ 取得了 70.3 的优异成绩,并且在各项数学相关基准测试中相比 Qwen2-VL-72B-Instruct 都有显著提升。通过细致的逐步推理,QVQ 在视觉推理任务中展现出增强的能力,尤其在需要复杂分析思维的领域表现出色。


模型链接:

https://modelscope.cn/models/Qwen/QVQ-72B-Preview


体验链接:

https://modelscope.cn/studios/Qwen/QVQ-72B-preview


中文博客:

https://qwenlm.github.io/zh/blog/qvq-72b-preview



01


模型局限性


QvQ-72B-Preview 是由 Qwen 团队开发的实验性研究模型,专注于增强视觉推理能力。尽管它的表现超出了预期,但仍有几个限制需要注意:

    语言混合和代码切换:模型可能会意外地混合语言或在语言之间切换,从而影响响应的清晰度。

    递归推理:模型可能会陷入循环逻辑模式,产生冗长的响应而无法得出结论。

    安全和伦理考虑:模型需要增强安全措施,以确保可靠和安全的性能,用户在部署时应保持谨慎。

    性能和基准限制:尽管模型在视觉推理方面有所改善,但它无法完全替代 Qwen2-VL-72B 的能力。此外,在多步骤视觉推理过程中,模型可能会逐渐失去对图像内容的关注,导致幻觉。


02


模型表现


Qwen团队在 4 个数据集上评估 QVQ-72B-Preview,包括:


    MMMU:一个大学级别的多学科多模态评测集,旨在考察模型视觉相关的综合理解和推理能力。

    MathVista:一个数学相关的视觉推理测试集,评估拼图测试图形的逻辑推理、函数图的代数推理和学术论文图形的科学推理等能力。

    MathVision:一个高质量多模态数学推理测试集,来自于真实的数学竞赛,相比于MathVista具有更多的问题多样性和学科广度。

    OlympiadBench:一个奥林匹克竞赛级别的双语多模态科学基准测试集,包含来自奥林匹克数学和物理竞赛的8,476个问题,包括中国高考。每个问题都附有专家级别的注释,详细说明了逐步推理的过程。

QVQ-72B-Preview 在 MMMU 基准测试中取得了 70.3 的分数,显著超越了 Qwen2-VL-72B-Instruct。此外,在剩下的三个专注于数学和科学问题的基准测试中,该模型表现出色,有效缩小了与领先的最先进的 o1 模型之间的差距。


03


示例效果


以下,将展示几个示例,以说明该新模型在视觉推理任务中的应用。


上下滑动,查看完整示例


上下滑动,查看完整示例



更多内容,详见Qwen团队技术博客:

https://qwenlm.github.io/zh/blog/qvq-72b-preview/


04


模型应用最佳实践


模型推理

transformers推理代码:

    from modelscope import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessorfrom qwen_vl_utils import process_vision_info
    # default: Load the model on the available device(s)model = Qwen2VLForConditionalGeneration.from_pretrained( "Qwen/QVQ-72B-Preview", torch_dtype="auto", device_map="auto")
    # default processerprocessor = AutoProcessor.from_pretrained("Qwen/QVQ-72B-Preview")
    # The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.# min_pixels = 256*28*28# max_pixels = 1280*28*28# processor = AutoProcessor.from_pretrained("Qwen/QVQ-72B-Preview", min_pixels=min_pixels, max_pixels=max_pixels)
    messages = [ { "role": "system", "content": [ {"type": "text", "text": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. Answer in the language of the question. You should think step-by-step."} ], }, { "role": "user", "content": [ { "type": "image", "image": "https://qianwen-res.oss-accelerate-overseas.aliyuncs.com/QVQ/demo.png", }, {"type": "text", "text": "What value should be filled in the blank space?"}, ], }]
    # Preparation for inferencetext = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True)image_inputs, video_inputs = process_vision_info(messages)inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt",)inputs = inputs.to("cuda")
    # Inference: Generation of the outputgenerated_ids = model.generate(**inputs, max_new_tokens=8192)generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)print(output_text)


    使用魔搭API-Inference直接调用

    魔搭平台的API-Inference,也第一时间为QVQ-72B-Preview模型提供了支持,魔搭的用户可通过API调用的方式直接使用该模型。具体API-Inference的使用方式可参见文档:https://www.modelscope.cn/docs/model-service/API-Inference/intro

      import osfrom openai import OpenAI
      client = OpenAI( api_key=os.getenv("MODELSCOPE_ACCESS_TOKEN"), base_url="https://api-inference.modelscope.cn/v1")
      response = client.chat.completions.create( model="Qwen/QVQ-72B-Preview", messages = [ { "role": "system", "content": [ {"type": "text", "text": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."} ], }, { "role": "user", "content": [ { "type": "image_url", "image_url": {"url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/QVQ/demo.png"} }, {"type": "text", "text": "What value should be filled in the blank space?"}, ], } ], stream=True )

      for chunk in response: print(chunk.choices[0].delta.content, end='', flush=True)

      感谢阿里云百炼平台提供背后算力支持。


      模型微调

      我们使用ms-swift对QVQ-72B-Preview进行微调。ms-swift是魔搭社区官方提供的大模型与多模态大模型微调部署框架。


      ms-swift开源地址:https://github.com/modelscope/ms-swift


      在这里,我们将展示可直接运行的demo,并给出自定义数据集的格式。

      在开始微调之前,请确保您的环境已准备妥当。

        git clone https://github.com/modelscope/ms-swift.gitcd ms-swiftpip install -e .[llm]


        图像OCR微调脚本如下:

          # 实验环境:2*80GiB A100MAX_PIXELS=1003520 \CUDA_VISIBLE_DEVICES=0,1 \swift sft \    --model Qwen/QVQ-72B-Preview \    --dataset AI-ModelScope/LaTeX_OCR:human_handwrite#20000 \    --train_type lora \    --torch_dtype bfloat16 \    --num_train_epochs 1 \    --per_device_train_batch_size 1 \    --per_device_eval_batch_size 1 \    --learning_rate 1e-4 \    --lora_rank 8 \    --lora_alpha 32 \    --target_modules all-linear \    --freeze_vit true \    --gradient_accumulation_steps 16 \    --eval_steps 50 \    --save_steps 50 \    --save_total_limit 5 \    --logging_steps 5 \    --max_length 2048 \    --output_dir output \    --warmup_ratio 0.05 \    --dataloader_num_workers 4


          训练显存资源:


          视频微调脚本如下:

            # 实验环境:4*80GiB A100# You can refer to `https://github.com/QwenLM/Qwen2-VL` for the meaning of the `VIDEO_MAX_PIXELS` parameter.nproc_per_node=4
            CUDA_VISIBLE_DEVICES=0,1,2,3 \NPROC_PER_NODE=$nproc_per_node \VIDEO_MAX_PIXELS=50176 \FPS_MAX_FRAMES=12 \swift sft \ --model Qwen/QVQ-72B-Preview \ --dataset swift/VideoChatGPT:all \ --train_type lora \ --torch_dtype bfloat16 \ --num_train_epochs 1 \ --per_device_train_batch_size 1 \ --per_device_eval_batch_size 1 \ --learning_rate 1e-4 \ --lora_rank 8 \ --lora_alpha 32 \ --target_modules all-linear \ --freeze_vit true \ --gradient_accumulation_steps $(expr 16 / $nproc_per_node) \ --eval_steps 50 \ --save_steps 50 \ --save_total_limit 5 \ --logging_steps 5 \ --max_length 2048 \ --output_dir output \ --warmup_ratio 0.05 \ --dataloader_num_workers 4 \ --deepspeed zero3

            训练显存资源:


            自定义数据集格式如下(system字段可选),只需要指定`--dataset <dataset_path>`即可:

              {"messages": [{"role": "user", "content": "浙江的省会在哪?"}, {"role": "assistant", "content": "浙江的省会在杭州。"}]}{"messages": [{"role": "user", "content": "<image><image>两张图片有什么区别"}, {"role": "assistant", "content": "前一张是小猫,后一张是小狗"}], "images": ["/xxx/x.jpg", "xxx/x.png"]}{"messages": [{"role": "system", "content": "你是个有用无害的助手"}, {"role": "user", "content": "<video>视频中是什么"}, {"role": "assistant", "content": "视频中是一只小狗在草地上奔跑"}], "videos": ["/xxx/x.mp4"]}

              训练完成后,使用以下命令对训练时的验证集进行推理

              这里`--adapters`需要替换成训练生成的last checkpoint文件夹. 由于adapters文件夹中包含了训练的参数文件,因此不需要额外指定`--model`:

              # 若是对视频数据进行推理,通常需要4卡CUDA_VISIBLE_DEVICES=0,1 \swift infer \    --adapters output/vx-xxx/checkpoint-xxx \    --stream false \    --max_batch_size 1 \    --load_data_args true \    --max_new_tokens 2048


              点击阅读原文,即可跳转体验页面~




              ?点击关注ModelScope公众号获取

              更多技术信息~




              阅读原文

              跳转微信打开

              Fish AI Reader

              Fish AI Reader

              AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

              FishAI

              FishAI

              鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

              联系邮箱 441953276@qq.com

              相关标签

              QVQ 多模态推理 模型应用 模型局限性
              相关文章