MarkTechPost@AI 2024年12月15日
CloudFerro and ESA Φ-lab Launch the First Global Embeddings Dataset for Earth Observations
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

CloudFerro与ESA Φ-lab合作推出了首个全球地球观测嵌入数据集,该数据集是Major TOM项目的一部分,旨在为地球观测提供标准化、开放且易于访问的AI就绪数据集。此举旨在解决管理和分析大量哥白尼卫星数据的挑战,同时促进可扩展的AI应用。该数据集将高维度图像数据转换为紧凑的向量表示,方便快速搜索、比较和分析,并包含超过1.69亿个数据点和350多万张独特图像。利用深度学习模型,这些嵌入简化了全球范围内卫星图像的处理和分析,并具备广泛的应用前景。

🌍 全球覆盖: 该数据集包含超过1.69亿个数据点和350多万张独特图像,全面代表了地球表面。

🤖 多样模型: 使用四种不同的模型生成,包括SSL4EO-S2、SSL4EO-S1、SigLIP和DINOv2,提供针对不同用例的多种特征表示。

🗂️ 高效格式: 嵌入数据以GeoParquet格式存储,与地理空间数据工作流程无缝集成,实现高效查询和处理。

⏱️ 应用广泛: 该数据集支持土地利用监测、环境分析、数据搜索与检索以及时间序列分析等多种应用,降低了计算成本。

☁️ 高效计算: 计算在CloudFerro的CREODIAS云平台上进行,利用高性能硬件处理了来自哥白尼数据的数万亿像素。

CloudFerro and European Space Agency (ESA) Φ-lab have introduced the first global embeddings dataset for Earth observations, a significant development in geospatial data analysis. This dataset, part of the Major TOM project, aims to provide standardized, open, and accessible AI-ready datasets for Earth observation. This collaboration addresses the challenge of managing and analyzing the massive archives of Copernicus satellite data while promoting scalable AI applications.

The Role of Embedding Datasets in Earth Observation

The ever-increasing volume of Earth observation data presents challenges in processing and analyzing large-scale geospatial imagery efficiently. Embedding datasets tackle this issue by transforming high-dimensional image data into compact vector representations. These embeddings encapsulate key semantic features, facilitating faster searches, comparisons, and analyses.

The Major TOM project focuses on the geospatial domain, ensuring that its embedding datasets are compatible and reproducible for various Earth observation tasks. By leveraging advanced deep learning models, these embeddings streamline the processing and analysis of satellite imagery on a global scale.

Features of the Global Embeddings Dataset

The embedding datasets, derived from Major TOM Core datasets, include over 60 TB of AI-ready Copernicus data. Key features include:

Embedding Methodology

The creation of the embeddings involves several steps:

    Image Fragmentation: Satellite images are divided into smaller patches suitable for model input sizes, preserving geospatial details.Preprocessing: Fragments are normalized and scaled according to the requirements of the embedding models.Embedding Generation: Preprocessed fragments are processed through pretrained deep learning models to create embeddings.Data Integration: The embeddings and metadata are compiled into GeoParquet archives, ensuring streamlined access and usability.

This structured approach ensures high-quality embeddings while reducing computational demands for downstream tasks.

Applications and Use Cases

The embedding datasets have diverse applications, including:

Computational Efficiency

The embedding datasets are designed for scalability and efficiency. The computations were performed on CloudFerro’s CREODIAS cloud platform, utilizing high-performance hardware such as NVIDIA L40S GPUs. This setup enabled the processing of trillions of pixels from Copernicus data while maintaining reproducibility.

Standardization and Open Access

A hallmark of the Major TOM embedding datasets is their standardized format, which ensures compatibility across models and datasets. Open access to these datasets fosters transparency and collaboration, encouraging innovation within the global geospatial community.

Advancing AI in Earth Observation

The global embeddings dataset represents a significant step forward in integrating AI with Earth observation. Enabling efficient processing and analysis equips researchers, policymakers, and organizations to better understand and manage the Earth’s dynamic systems. This initiative lays the groundwork for new applications and insights in geospatial analysis.

Conclusion

The partnership between CloudFerro and ESA Φ-lab exemplifies progress in the geospatial data industry. By addressing the challenges of Earth observation and unlocking new possibilities for AI applications, the global embeddings dataset enhances our capacity to analyze and manage satellite data. As the Major TOM project evolves, it is poised to drive further advancements in science and technology.


Check out the Paper and Dataset. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

The post CloudFerro and ESA Φ-lab Launch the First Global Embeddings Dataset for Earth Observations appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

地球观测 嵌入数据集 人工智能 哥白尼数据 遥感分析
相关文章