MarkTechPost@AI 2024年12月10日
LLM-Check: Efficient Detection of Hallucinations in Large Language Models for Real-Time Applications
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

LLM-Check是一种检测大型语言模型中幻觉的方法,解决了模型输出可能存在不准确等问题。该方法通过分析内部表示等,在不同场景下表现出色,具有高效性和准确性,适用于实时应用。

🎯LLM-Check可检测语言模型输出中的幻觉,克服以往方法的局限。

💡通过分析内部注意力图、隐藏激活和输出概率进行检测。

🚀在多种数据集上表现良好,计算效率高,速度提升达450倍。

📈使用多种指标评估,在不同场景下检测效果优异。

LLMs like GPT-4 and LLaMA have gained significant attention for their exceptional capabilities in natural language inference, summarization, and question-answering tasks. However, these models often generate outputs that appear credible but include inaccuracies, fabricated details, or misleading information, a phenomenon termed hallucinations. This issue presents a critical challenge for deploying LLMs in applications where precision and reliability are essential. Detecting and mitigating hallucinations have, therefore, become crucial research areas. The complexity of identifying hallucinations varies based on whether the model is accessible (white-box) or operates as a closed system (black-box).

Various methods have been developed to address hallucination detection, including uncertainty estimation using metrics like perplexity or logit entropy, token-level analysis, and self-consistency techniques. Consistency-based approaches, such as SelfCheckGPT and INSIDE, rely on analyzing multiple responses to the same prompt to detect inconsistencies indicative of hallucinations. RAG methods combine LLM outputs with external databases for fact verification. However, these approaches often assume access to multiple responses or large datasets, which may only sometimes be feasible due to memory constraints, computational overheads, or scalability issues. This raises the need for an efficient method to identify hallucinations within a single response in white-box and black-box settings without additional computational burdens during training or inference.

Researchers from the University of Maryland conducted an in-depth study on hallucinations in LLMs, proposing efficient detection methods that overcome the limitations of prior approaches like consistency checks and retrieval-based techniques, which require multiple model outputs or large databases. Their method, LLM-Check, detects hallucinations within a single response by analyzing internal attention maps, hidden activations, and output probabilities. It performs well across diverse datasets, including zero-resource and RAG settings. LLM-Check achieves significant detection improvements while being highly computationally efficient, with speedups of up to 450x compared to existing methods, making it suitable for real-time applications.

The proposed method, LLM-Check, detects hallucinations in LLM outputs without additional training or inference overhead by analyzing internal representations and output probabilities within a single forward pass. It examines hidden activations, attention maps, and output uncertainties to identify differences between truthful and hallucinated responses. Key metrics include Hidden Score, derived from eigenvalue analysis of hidden representations, and Attention Score, based on attention kernel maps—additionally, token-level uncertainty metrics like Perplexity and Logit Entropy capture inconsistencies. The method is efficient, requiring no fine-tuning or multiple outputs, and operates effectively across diverse hallucination scenarios in real time.

The study evaluates hallucination detection methods using FAVA-Annotation, SelfCheckGPT, and RAGTruth datasets. Metrics such as AUROC, accuracy, and F1 score were analyzed across LLMs like Llama-2, Vicuna, and Llama-3 using detection measures including entropy, Hidden, and Attention scores. Results highlight the superior performance of LLM-Check’s Attention scores, particularly in zero-context settings and black-box evaluations. Runtime analysis shows LLM-Check is faster than baseline methods, requiring minimal overhead for real-time application. The study also finds varying optimal methods depending on dataset characteristics, with synthetic hallucinations favoring entropy-based metrics and real hallucinations performing best with attention-based approaches.

In conclusion, the study presents LLM-Check, a suite of efficient techniques for detecting hallucinations in single LLM responses. LLM-Check eliminates the need for finetuning, retraining, or reliance on multiple model outputs and external databases by leveraging internal representations, attention maps, and logit outputs. It excels in white-box and black-box settings, including scenarios with ground-truth references, such as RAG. Compared to baseline methods, LLM-Check substantially improves detection accuracy across diverse datasets while being highly compute-efficient, offering speedups of up to 450x. This approach addresses LLM hallucinations effectively, ensuring practicality for real-time applications.


Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

[Must Subscribe]: Subscribe to our newsletter to get trending AI research and dev updates

The post LLM-Check: Efficient Detection of Hallucinations in Large Language Models for Real-Time Applications appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM-Check 语言模型幻觉 检测方法 高效准确
相关文章