少点错误 2024年12月10日
Keeping self-replicating nanobots in check
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种防止自我复制纳米机器人失控的新思路。该思路的核心在于,纳米机器人不应复制自身的“DNA”或自我复制指令,而是从更高层级的纳米机器人“下载”这些指令。这种分层结构可以有效阻止突变版本的自我复制指令持续存在。作者认为,这种方法比让纳米机器人自行检查突变更为安全,因为大的突变可能会禁用检查程序,而分层结构只有在突变产生全新的复制过程时才会失效,这种情况发生的可能性较低。虽然这个想法可能并不重要,因为能够制造自我复制纳米机器人的人工智能很可能已经考虑到了这个问题,但它仍然为我们提供了一个有趣的思考角度。

🤖**纳米机器人不复制自身指令**:自我复制的纳米机器人不应复制自身的“DNA”或自我复制指令,而是从更高层级的“主纳米机器人”处“下载”这些指令,主纳米机器人使用一个“主副本”来创建新的副本。

🛡️**分层突变预防机制**:为了确保突变的主副本永远不能创建另一个主副本,主副本采用不同的格式。例如,主副本可能是一组用于输出正常副本的指令。当一个新的“主纳米机器人”被构建并需要一个新的主副本时,它必须从一个更大的、二阶主纳米机器人那里获得它的主副本。这是一个使用“主2副本”指令来铸造主副本指令的“主2纳米机器人”。

⬇️**下载而非复制**:通过这种方式,任何指令副本都不能创建与自身相同级别的另一个副本。它只能在较低级别创建副本。因此,如果自我复制指令在任何地方发生突变,突变版本都无法维持自身。自我复制指令是“下载的,而不是复制的”。

✅**与自检机制的比较**:理论上,这种方法比让自我复制的纳米机器人检查其指令的突变更为安全,因为大的突变可能会禁用检查过程,同时保留自我复制过程。这种分层突变预防系统只有在大的突变产生一个全新的复制指令过程时才会失效,这似乎不太可能。

💡**潜在意义与局限性**:作者认为这个想法并不十分重要,因为能够制造自我复制纳米机器人的人工智能很可能已经考虑到了这个问题。使用它的人类可能足够聪明,能够提出解决这个问题的办法。但是,这仍然是一个值得思考的有趣概念。

Published on December 9, 2024 5:25 AM GMT

This is a random unimportant idea to prevent a grey goo scenario, where self replicating nanobots accidentally go out of control and consume everything.

My idea is that self replicating nanobots should never replicate their "DNA," or self replication instructions. Instead, each nanobot can only "download" these self replication instructions from a higher level nanobot.

I'm not sure if this idea is new.

Hierarchical mutation prevention

Every complex thing that self replicates, from humans to bacteria to viruses to computer viruses, have some kind of instruction, be it DNA or computer code, that relies on some general purpose interpreter, be it gene expression or code execution. This is probably the case for self replicating nanobots too.

The self replicating nanobots should never replicate their self replication instructions, but receive new copies from a "master nanobot" which uses one "master copy" to create new copies.

To ensure a mutated master copy can never create another master copy, the master copy has a different format. For example, the master copy might be a set of instructions for outputting a normal copy.

When a new "master nanobot" is built, and needs a new master copy, it must get its master copy from a bigger, second order master nanobot. This is a " nanobot," which uses a " copy" of the instructions, to mint master copies of the instructions.

In this way, no copy of the instructions can create another copy at the same level of itself. It can only create copies on a lower level. So if the self replication instructions mutate anywhere, the mutated version cannot sustain itself. The self replication instructions are "downloaded, not replicated."

Conclusion

In theory, this is safer than having the self replicating nanobots check their instructions for mutations, since a large mutation might disable the checking process while preserving the self replication process. This hierarchical mutation prevention system only breaks if a large mutation creates an entirely new process of replicating the instructions, which seems less likely.

This idea isn't very important, because I feel an AGI that's so good at engineering (and inventing) that it can make self replicating nanobots, can probably think of this. The humans using it are probably wise enough to ask for solutions to the problem.



Discuss

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

纳米机器人 自我复制 突变预防 分层控制 人工智能
相关文章