MarkTechPost@AI 2024年12月09日
Voyage AI Introduces voyage-code-3: A New Next-Generation Embedding Model Optimized for Code Retrieval
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Voyage AI 推出新一代代码检索嵌入模型 voyage-code-3,在 238 个代码检索数据集上,其性能显著超越 OpenAI-v3-large 和 CodeSage-large 等现有模型,平均性能提升分别达到 13.80% 和 16.81%。该模型支持 256 至 2048 多种嵌入维度,兼顾检索质量和计算效率。它还采用了 Matryoshka 嵌入和高级量化技术,有效降低存储和搜索成本,为大规模代码搜索和管理系统提供了变革性解决方案。

🚀Voyage-code-3 是一款专为代码检索任务设计的高级嵌入模型,在 238 个代码检索数据集上,其性能显著优于现有的先进解决方案,如 OpenAI-v3-large 和 CodeSage-large,平均性能提升分别达到 13.80% 和 16.81%。

💾该模型引入了 Matryoshka 嵌入和高级量化技术,以应对基于向量搜索的计算挑战,特别是对于大型代码库。通过支持低维嵌入和实现二进制及 int8 量化方法,显著降低了存储和搜索成本,同时保持了强大的检索性能。

🔍代码检索是一个复杂领域,其挑战远超传统文本搜索方法。它需要对编程语言的复杂性进行精细的算法推理和对语法结构的细致理解。代码检索包括文本到代码、代码到代码和文档字符串到代码检索等多种子任务,每种都需要精确的语义理解和高级匹配能力。

🔬voyage-code-3 的评估采用了一种严谨且系统的方法,以评估代码嵌入模型的性能,解决了现有基准测试实践中的关键局限性。研究人员开发了一个全面的评估框架,该框架超越了传统的评估方法,认识到现有数据集中的固有挑战。

📈实验结果表明,voyage-code-3 在各种维度配置和存储成本情景下都取得了显著的性能提升。例如,在 1024 和 256 维度下,该模型分别比 OpenAI-v3-large 提高了 14.64% 和 17.66%。此外,该模型在仅使用三分之一原始存储成本的情况下,性能提升了 13.80%。

Research in code embedding models has witnessed a significant breakthrough with the introduction of voyage-code-3, an advanced embedding model specifically designed for code retrieval tasks by researchers from Voyage AI. The model demonstrates remarkable performance, substantially outperforming existing state-of-the-art solutions like OpenAI-v3-large and CodeSage-large. Empirical evaluations across a comprehensive suite of 238 code retrieval datasets reveal that voyage-code-3 achieves an impressive average performance improvement of 13.80% and 16.81% over these competing models, highlighting its potential to revolutionize code search and retrieval technologies.

The development of voyage-code-3 introduces innovative approaches to address the computational challenges in vector-based search, particularly for extensive code repositories. Matryoshka embeddings and advanced quantization techniques emerge as critical strategies to mitigate storage and search costs. The model tackles the linear scalability challenge by supporting lower-dimensional embeddings and implementing binary and int8 quantization methods. These technological advancements enable significant cost reductions while maintaining robust retrieval performance, presenting a transformative solution for large-scale code search and management systems.

The landscape of code retrieval represents a complex domain with multifaceted challenges that extend beyond traditional text search methodologies. Unique computational demands arise from the intricate nature of programming languages, requiring sophisticated algorithmic reasoning and a nuanced understanding of syntax structures. Code retrieval encompasses diverse subtasks, including text-to-code, code-to-code, and docstring-to-code retrievals, each demanding precise semantic comprehension and advanced matching capabilities. These sophisticated retrieval scenarios necessitate advanced embedding models capable of capturing intricate programmatic relationships and context-specific nuances.

The evaluation of voyage-code-3 represents a rigorous and methodical approach to assessing code embedding model performance, addressing critical limitations in existing benchmarking practices. Researchers developed a comprehensive evaluation framework that goes beyond traditional assessment methods, recognizing the inherent challenges in existing datasets. By identifying and mitigating issues such as noisy labels and potential data contamination, the study aimed to create a more robust and realistic assessment of code retrieval capabilities. The evaluation strategy incorporated diverse tasks, including text-to-code and code-to-code retrievals, and utilized repurposed question-answer datasets to provide a more nuanced and comprehensive understanding of the model’s capabilities.

The experimental results of voyage-code-3 demonstrate substantial performance gains across various dimensional configurations and storage cost scenarios. At 1024 and 256 dimensions, the model outperforms OpenAI-v3-large by 14.64% and 17.66%, respectively, showcasing impressive retrieval capabilities. Moreover, the model achieves a 13.80% performance improvement while utilizing only one-third of the original storage costs, comparing 1024 and 3072 dimensions. In an even more remarkable achievement, voyage-code-3 maintains a 4.81% performance advantage at an extraordinary storage cost reduction of 1/384, comparing binary 256-dimensional embeddings with float 3072-dimensional embeddings. The introduction of binary rescoring techniques further enhances retrieval quality, potentially yielding up to a 4.25% improvement when applied to standard binary retrieval methods.

Voyage-code-3 emerges as an innovative embedding model that sets new benchmarks in code retrieval technology. The model demonstrates exceptional performance, significantly surpassing existing solutions like OpenAI-v3-large and CodeSage-large across a comprehensive suite of 238 code retrieval datasets. With impressive average performance improvements of 13.80% and 16.81%, respectively, voyage-code-3 represents a significant leap forward in embedding model capabilities. Its versatile design supports multiple embedding dimensions ranging from 256 to 2048, providing users with unprecedented flexibility in balancing retrieval quality and computational efficiency.


Check out the Details. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter.. Don’t Forget to join our 60k+ ML SubReddit.

[Must Attend Webinar]: ‘Transform proofs-of-concept into production-ready AI applications and agents’ (Promoted)

The post Voyage AI Introduces voyage-code-3: A New Next-Generation Embedding Model Optimized for Code Retrieval appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

代码检索 嵌入模型 Voyage AI 人工智能 深度学习
相关文章