Artificial-Intelligence.Blog - Artificial Intelligence News 2024年12月06日
Variational Autoencoder • VAE
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

变分自动编码器(VAE)是一种用于生成新数据的机器学习模型,属于自动编码器的一种。与传统自动编码器不同,VAE并非直接输出压缩后的编码,而是生成一个潜在输出的统计分布,并从中采样生成新数据。它包含编码器、随机采样和解码器三个部分,通过重建损失和正则化损失进行训练,最终能够生成与训练数据类似的新数据。VAE已被广泛应用于人脸生成、手写风格生成、数字艺术创作等领域,在学术界和工业界都备受关注。

🤔**VAE是一种生成式机器学习模型,能够生成新的数据。**它通过学习输入数据的潜在表示,并从中采样生成新的数据,例如人脸、手写风格等。

🔄**VAE的工作流程包括编码器、随机采样和解码器三个阶段。**编码器将输入数据映射到潜在空间,随机采样从潜在空间的正态分布中抽取样本,解码器将样本映射回原始数据空间。

📊**VAE的训练过程涉及重建损失和正则化损失两个损失函数。**重建损失用于确保解码后的数据与原始数据尽可能一致,正则化损失用于学习良好的潜在空间并防止过拟合。

🌍**VAE在多个领域都有应用,例如生成图像、文本、音频等。**例如,VAE可以用来生成逼真的图像、模拟不同的手写风格、创作数字艺术作品等。

📈**VAE在中国受到广泛关注,其研究热度在过去20多年一直保持稳定。**这表明VAE在学术界和工业界都具有重要的研究价值和应用前景。

A Variational Autoencoder (VAE) is a type of artificial neural network used in the field of machine learning for the purpose of generating new data. It's a type of autoencoder, a neural network used for learning efficient codings of input data.

While a traditional autoencoder learns to compress data from the input layer into a short code, and then uncompress that code into the original data, a VAE turns the problem around. Instead of producing a single output (the compressed code), the VAE produces a statistical distribution of possible outputs. It then samples from this distribution to generate new data.

Here's a simplified explanation of how VAE works:

    Encoder: First, an encoder network turns the input data into two parameters in a latent space of representations.

    Random Sampling: We randomly sample similar points from the latent normal distribution that is assumed to generate the data.

    Decoder: Finally, a decoder network maps these random samples back to the original input data.

The parameters of the VAE are trained via two loss functions: a reconstruction loss that pushes the decoded samples to match the initial inputs, and a regularization loss, which helps learn well-formed latent spaces and reduce overfitting to the training data. The end result is a model that can generate new data that looks like the data it was trained on.

VAEs have been applied in a variety of applications such as generating human faces, handwriting styles, digital art, and more.

 

The basic scheme of a variational autoencoder. The model receives x as input. The encoder compresses it into the latent space. The decoder receives as input the information sampled from the latent space and produces x’ as similar as possible to x.

 

Videos to learn more about VAEs

VAEs are typically of higher interest in China and interest levels have been pretty steady for the past 20+ years.

Articles about VAEs

Sources

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

变分自动编码器 VAE 机器学习 生成模型 人工智能
相关文章