Hello Paperspace 2024年11月27日
CODEGEN: A Transformative Open-Source Language Model for Versatile Program Synthesis
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

CODEGEN是由Salesforce Research团队开发的开源大语言模型,旨在实现程序合成,降低编程门槛。它通过多阶段训练,结合自然语言和编程语言数据,具备强大的代码生成能力,并在HumanEval基准测试中表现出色。CODEGEN尤其擅长多轮程序合成,允许用户与模型交互,逐步完善代码,提高代码质量和准确性。此外,CODEGEN已集成Hugging Face Transformers库,方便开发者在各种应用中使用。CODEGEN的出现为自动化代码生成、代码修复、代码翻译等领域带来了新的可能性,有望推动编程领域的民主化和发展。

🤔 **多阶段训练提升代码生成能力:**CODEGEN采用三阶段训练方式,分别在自然语言数据集、多语言代码数据集和Python代码数据集上进行训练,使其能够理解自然语言并生成多种编程语言的代码,例如C、C++、Go、Java、JavaScript和Python等。

🚀 **HumanEval基准测试表现优异:**CODEGEN在HumanEval基准测试中表现出色,超越了现有最先进的模型,证明了其在零样本代码生成方面的强大能力,能够生成高质量、功能完备的代码,无需针对特定任务进行微调。

🔄 **多轮程序合成提升代码质量:**CODEGEN支持多轮程序合成,允许用户通过与模型交互,逐步完善代码,例如提供初始描述、修改代码、纠正错误等,从而生成更复杂、更准确的代码,有效解决了复杂编程任务。

🤝 **集成Hugging Face Transformers库:**CODEGEN已集成Hugging Face Transformers库,方便开发者轻松使用该模型,例如加载模型、定义提示、生成代码等,并支持多种CODEGEN模型,例如CODEGEN-2.0和CODEGEN-2.5。

💡 **广泛的应用场景:**CODEGEN在自动化代码生成、代码修复、代码翻译等领域具有广泛的应用前景,例如开发者可以使用CODEGEN自动生成代码,提高开发效率,降低开发成本,并推动编程领域的民主化。

Introduction

With the rise of large language models (LLMs), we are thinking and approaching things differently for many tasks, from natural language processing and text generation to programming. From OpenAI’s GPT-3 and GPT-4 to Anthropic Claude, Google’s PaLM, and Apple’s Certainly, we are in a post-LLM era.

One of the most exciting tools is an open-source LLM for program synthesis that’s democratized everyone’s access to coding. It’s called CODEGEN. CODEGEN has been created by the Salesforce Research team. in this article, we will explore its capabilities and implications for the future of programming.

Join our Discord Community

Get started Join the community

CODEGEN: Democratizing Program Synthesis

High-performance language models for program synthesis have been held back due to the lack of training resources and data – now, the Salesforce Research team has started to tackle this with a family of LLMs called CODEGEN with a size range from 1.5 billion to 16.1 billion parameters.

The innovation behind CODEGEN is the all-encompassing training. It draws on vast corpora of text in natural language and programming language, leading to a deep understanding by CODEGEN of human language and code. This allows it to excel at many program synthesis tasks.

The most impressive aspect of CODEGEN is its excellence on the HumanEval benchmark, the de facto standard evaluation for zero-shot code generation. By outperforming state-of-the-art models, CODEGEN illustrates the possibility of producing high-quality, functional code without fine-tuning a specific task.

Multi-Stage Training Approach of CodeGen for Enhanced Program Synthesis

CodeGen's transformer-based architecture utilizes self-attention mechanisms to capture complex relationships in natural language and code. What makes CodeGen unique is its multi-stage training approach that enables it to understand and produce codes across various programming languages with robust proficiency. The three pivotal stages involved in the CodeGen model's training process are:

Image source

With the possibility of a sequential training approach, CodeGen can understand natural language and several programming languages. As such, it is an effective solution for tasks related to program synthesis.

Unlocking the Power of Multi-Turn Program Synthesis

Multi-turn program synthesis represents a cutting-edge methodology in code creation. In this approach users and systems engage in iterative interaction to incrementally craft, refine, and correct programs.

In stark contrast to conventional single-turn techniques that yield complete snippets from individual prompts alone, multi-turn synthesis facilitates linteractive development. This enables more complex and accurate code to be produced.

Key Concepts of Multi-Turn Program Synthesis

Here are some key concepts of Multi-turn program synthesis:

Multi-Turn Code Generation with CODEGEN

This is impressive – no one should be underestimating CODEGEN, which still performed well for single-turn code generation tasks. Howerver the researchers building the model have taken these investigations further, exploring multi-turn program synthesis. In most program synthesis efforts, the task is to give the model a single, full input prompt, and let it try to spit out the program in one shot.

The Salesforce Research team realized that a more nuanced, step-by-step approach was often necessary, where a complex problem was pared down into small, modular subproblems.

To investigate this concept, the researchers developed the Multi-Turn Programming Benchmark (MTPB). It's comprehensive dataset consisting of 115 diverse problem sets that require multi-turn program synthesis. By evaluating CODEGEN's performance on this benchmark, they were able to demonstrate the significant advantages of a multi-turn approach over a single-turn approach.

Enhancing Code Generation Through Iterative Refinement

if a user is assigned to execute a linear regression model, he may request the model saying "Execute linear regression on X and Y." The assumption here is that the model understands this instruction fluently and presents an all-inclusive code snippet promptly. This technique can prove useful for simple tasks but becomes inadequate when confronted with more complex programming challenges.

Multi-turn programming synthesis revolutionizes this process. It splits tasks into smaller steps so they can be improved over time. For example, if we wanted to perform linear regression on x and y, instead of doing everything at once, the program would start by setting up basic structures like importing libraries and defining variables before completing the task.

The user will provide more prompts like " Fit the model with the data and print the coefficients" and he can say next "Predict the values for a new set of x and plot the results". This helps to ensure that each part of the task is addressed correctly and can be changed based on feedback from the user. The diagram below illustrates the single-turn and multi-turn examples for a linear regression task.

Multi-turn programming synthesis: step-by-step execution of linear regression tasks

Using multiple turns has many benefits. It helps us control the coding process more accurately because each turn focuses on a particular task, which reduces errors. Getting feedback from the user throughout allows for adjustments to be made that better fit their needs and preferences.

The flowchart above capture the striking divergence that exists between single-turn and multi-turn programming synthesis when it comes to setting up a linear regression model. When using the former approach, users simply prompt: "Perform linear regression on x and y" craving for complete code generation instantaneously. However, this method proves limited in tackling complex coding challenges that demand understanding and iterative refinement.

In the multi-turn example, we take iterative steps to complete a process. The user starts with a prompt and gets structured responses that help set up basic framework like necessary libraries and variables. Each subsequent interaction involves feedback to guide the model through fitting data, printing coefficients, predicting new values, and creating visualizations.

Integrating CODEGEN with Hugging Face Transformers

The other crucial ingredient for a Hugging Face-based system is the Transformers library, a powerful all-purpose open-source toolkit that lets developers work with LLMs, including CODEGEN. Integrating CODEGEN into the Transformers library allows users to easily harness the model’s capabilities in their applications and workflows.

Here's an example of how you can use CODEGEN with the Hugging Face Transformers library:

import torchfrom transformers import AutoTokenizer, AutoModelForCausalLMtokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-2B-mono")model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen-2B-mono")inputs = tokenizer("# this function prints hello world", return_tensors="pt")sample = model.generate(**inputs, max_length=128)print(tokenizer.decode(sample[0], truncate_before_pattern=[r"\n\n^#", "^'''", "\n\n\n"]))

Output:

The code above demonstrates how to load the CODEGEN-2B-mono model and use it to generate code based on a given prompt. Here's a breakdown of the steps:

The output of this code is a complete Python function that prints "hello world". We can also try using the other CODEGEN models, such as CODEGEN-2.0 and CODEGEN-2.5, by replacing the model and tokenizer paths accordingly. The models are available on the Hugging Face Hub.

Practical Applications for CODEGEN

The versatility of CODEGEN extends far beyond academic benchmarks, as it offers a wealth of practical applications across various industries and domains. There are some of the key use cases that showcase the power of this open-source language model.

Automated Code Generation

The most obvious use case for CODEGEN is code autogeneration. Developers will be able to create new software much more quickly by applying the natural language understanding built into CODEGEN. This is complemented by its natural language generation and automatic code-generation capabilities. This will save writing and maintenance time and effort to a significant extent, especially when rapid prototyping is needed, as well as being useful in an iterative development context.

Intelligent Code Assistance

CODEGEN can also be embedded in more intelligent forms of code assistance software that can provide developers with real-time, feature-based suggestions, code completion hints and code refactoring suggestions. In this manner, a language model can accelerate the rate at which developers can solve problems.

Conversational Programming Interfaces

The multi-turn capability of CODEGEN to support program synthesis enables the creation of conversational programming interface. The user can engage in natural language dialogue with the system that describes what they want the program to do, without needing to write code. This approach can be particularly useful for non-technical users or those with limited coding experience, as it removes the barrier of having to write code directly.

Domain-Specific Code Generation

Furthermore, CODEGEN can be fine-tuned or adapted to particular domains and industries. Its underlying knowledge and routine encapsulation could be set up and trained in any specific area, such as tthe financial sector, to generate customized trading algorithms or risk management models. Similarly, in the healthcare industry, CODEGEN can be used to create medical decision support systems or patient management apps.

Educational and Learning Applications

CODEGEN’s effective multi-turn synthesis can serve as an enhanced learning tool for students and aspiring programmers. By smoothly integrating step-by-step feedback into the synthesis process, CODEGEN can be effectively used as an interactive tutor. It helps foster the development of coding skills, programming tricks, and logical reasoning abilities. Such a system could be especially suitable in settings where learning takes place remotely or self‐paced.

Conclusion

Salesforce Research’s open-source large language model CODEGEN takes program synthesis to a new level. By combining the exponential capabilities inherent in large language models with the democratization brought about by providing access to these models, CODEGEN can leverage years of synthesis research. By incorporating new multi-turn synthesis capabilities, it has the potential to enable transformative approaches to programming and software development.

CODEGEN offers capabilities from synthesizing human-sounding code with a single input to interactive code help, conversational programming interfaces, and full-fledged domain-specific applications.

Undoubtedly there are more powerful use cases in natural language code synthesis waiting to be discovered. As the research community and industry push the boundaries of what can be achieved, we look forward to see even more groundbreaking applications in the industry.

References

CodeGen research paper

CodeGen github

Add speed and simplicity to your Machine Learning workflow today

Get startedTalk to an expert

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

CODEGEN 大语言模型 程序合成 多轮编程 开源
相关文章