Blog - Neural Network Console 2024年11月27日
We released Neural Network Console – Windows Version 1.40
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

索尼神经网络控制台Windows版本进行了更新,此次更新引入了错误分析、HTML报告输出等新功能,并对优化器、网络层等进行了改进。更新内容包括:错误(误分类)分析功能和排序推理结果,允许用户更方便地分析推理结果;HTML报告输出功能,方便用户保存和分享实验结果;其他功能和改进,如优化器范围设置、新层类型添加、新的示例项目等。这些更新旨在帮助用户更轻松地进行神经网络的训练和推理,并提升实验结果的分析和分享效率。

🤔 **错误分析与排序推理结果功能**: 更新后的版本新增了错误(误分类)分析功能,用户可以通过双击混淆矩阵中的单元格或右键菜单选择“List”,查看误分类的数据。对于无法使用混淆矩阵的数值预测问题,用户可以根据推理结果对整个数据集进行排序和显示,方便快速分析推理结果。

📝 **HTML报告输出功能**: 除了之前版本支持的PPTX报告外,现在可以将实验结果输出为HTML格式,方便保存和分享。用户可以通过右键点击训练或评估标签上的训练结果,选择“Export,html beta”导出HTML报告,报告包含数据集、网络架构、训练设置、测试结果等信息,方便复制粘贴到其他文档或博客中。

⚙️ **优化器范围设置**: 优化器中增加了范围设置,用户可以设置优化器生效的迭代或轮次范围。通过使用多个优化器,可以在训练过程中更改网络、数据集和超参数。

📚 **新增层类型和预热调度器**: 增加了Neural Network Libraries最新版本中引入的4种新层类型,以及学习率调度器的预热选项。

🆕 **新增示例项目**: 添加了多个新的示例项目,例如波形异常检测、可解释深度学习、Mixup训练和弱监督训练等,方便用户下载数据集并进行训练和推理。

We have updated Neural Network Console Windows today. We would like to introduce new functionalities and their usages in this post.

・Error (misclassification) analysis function, Sorting inference results
・Output html report
・other functionalities / improvements
 

1. Error (misclassification) analysis function & sorting inference results

Users can display the misclassified data from the confusion matrix of the inference results of binary or multi-way classification problems. To do so, double-click the corresponding cell on confusion matrix, or select List from the right-click menu.

Below is an example showing the data that misclassified the hand-written “9” as “4” in the sample project 02_binary_cnn.

In numerical prediction problems where confusion matrix cannot be applied, users can sort and display the entire dataset based on the inference results.

To sort the data, double-click the row to be sorted in Output Result, or select Sort from the right-click menu.

Below is an example displaying the sorted anomaly data in anomaly detection sample project (\samples\sample_project\tutorial\anomaly_detection\sin_wave_anomaly_detection).

Using these functionalities, inference results can be analyzed more quickly and easily.

 

2. Output html report (beta)

On top of outputting pptx report that was added in Version 1.20, Neural Network Console can now output the reports on experiment results as html format. This functionality can be helpful not only for preserving the experiments, but also for more efficient sharing of experiment results.

To output the results as html, right-click on the training results on TRAINING or EVALUATION tab, and select Export, html beta on the menu.

Below is an example of an html report output of LeNet sample project.

By using output html report functionality, dataset, network architecture, training settings, test results, and even references used in the experiment can be organized in a single html file. The contents in the html file can be easily copy-and-pasted to word files or blogs, etc.

 

3. Other functionalities & improvements

We have also implemented the following functionalities and improvements.

・Addition of Range setting in Optimizer

Users can now set the range of optimizer being effective (in iterations or epochs). By using multiple optimizers, it is possible to change the network, dataset, hyper-parameters even in the middle of training.

 

・Addition of new layers, Warmup Scheduler
4 types of layers, and the warmup option for learning rate scheduler, which have been introduced in the recent version of Neural Network Libraries, have also been added.

 

・New sample Project
Various sample projects have been added, where users can easily download the datasets and perform training and inference.

Waveform anomaly detection with artificial data.
samples\sample_project\tutorial\anomaly_detection

Description of the trained neural networks, including feature weight training, normalization, attention, and visualization of each layer’s recoginzation results.
samples\sample_project\tutorial\explainable_dl

Training with Mixup
samples\sample_project\image_recognition\CIFAR10\resnet\resnet-110-mixup.sdcproj

Weakly-supervised training with DeepMIL that can localize object positions by training with labels only samples\sample_project\image_recognition\CIFAR10\resnet\resnet-110-deepmil.sdcproj

 

We will continue to update sample projects
We will also continue to improve Neural Network Console. We look forward to hearing feedbacks from the users for further improvements!

 

Neural Network Console Windows
https://dl.sony.com/ja/app/

mixup: Beyond Empirical Risk Minimization Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz
https://arxiv.org/abs/1710.09412

Is object localization for free? – Weakly-supervised learning with convolutional neural networks.
M. Oquab, L. Bottou, I. Laptev, and J. Sivic.
In CVPR, pages 685-694, 2015.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经网络控制台 机器学习 人工智能 误分类分析 HTML报告
相关文章