Blog - Neural Network Console 2024年11月27日
Neural Network Console Windows Version 1.60 Released Today
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

索尼更新了Neural Network Console Windows版本,主要更新包括:使用Neural Network Console Cloud的计算资源进行训练、导出为TensorFlow格式(.pb)(beta版)以及添加LIME和推理插件。此次更新允许用户利用云端计算资源进行模型训练,并能将训练好的模型导出为TensorFlow格式,方便在更多环境中使用。此外,新增的LIME插件可帮助用户可视化输入数据对识别结果的影响,推理插件则方便用户在GUI上对新数据进行推理。这些更新旨在提升Neural Network Console的易用性和功能性,方便用户更便捷地进行神经网络开发和应用。

🤔 **使用Neural Network Console Cloud进行训练:**更新后的版本允许用户选择使用Neural Network Console Cloud的计算资源进行模型训练,项目和数据集会自动上传到云端,用户可以在本地界面查看训练进度,并支持并行训练,例如同时使用32个GPU进行训练。

🚀 **导出为TensorFlow格式(.pb):**用户可以通过ONNX将Neural Network Console训练的模型导出为TensorFlow格式,方便在更多环境中部署和使用训练好的模型。

🔍 **添加LIME插件:**LIME插件可以帮助用户可视化输入数据中哪些部分对识别结果产生了影响,类似于Grad-CAM插件,用户可以通过选择评估图像并运行LIME插件来查看结果。

💡 **添加推理插件:**推理插件方便用户在GUI界面上对新数据进行推理,用户可以选择训练结果并通过插件加载新的图像或CSV文件进行识别,或输入向量数据进行识别。

We have updated Neural Network Console Windows.
In this post, we will describe the following major updates.

 

1. Training with Neural Network Console Cloud’s computational resources Before we execute training

We can now select Neural Network Console Cloud’s training resources from the menu (※1).

By executing training with cloud version’s computational resources, the project and the dataset are automatically uploaded to Neural Network Console Cloud.
Once the training begins, we can check the progress of training in the same way we do when training with local processors.
We can also check the progress of training on Neural Network Console Cloud as well.

Also, when training with cloud version’s resources, it is possible to run multiple trainings in parallel.
For example, running 4 trainings in parallel with 8 GPUs for each, we can use 32 GPUs simultaneously.

For details about training with Neural Network Console Cloud’s resources, please refer to the following description from pdf manual included in Windows version.

6.1.9 Executing neural network training on the Neural Network Console Cloud version (beta)

 

2. Export to TensorFlow format (.pb) (beta)

We can export the model trained with Neural Network Console to TensorFlow format via ONNX, which has already been compatible (※2).
To export to TensorFlow format, right-click on the list of training results and select Export –> pb (TensorFlow frozen graph) from the menu.

With this export functionality, models trained with Neural Network Console can now be executed in a wider range of environments.

 

3. Addition of LIME, Inference plugins

We introduce two of our newest plugins below.

・LIME
LIME (※3)is a method to visualize which part of the input data exerts influence on the recognition results, as in our already available plugin Grad-CAM.

LIME can be used in the following way.

To enlarge the resulting image from LIME, double-click on LIME’s resulting image displayed on EVALUATION tab.

 

・Inference
This executes inference on single data.
Using this plugin, we can now easily run inference on new data on GUI.
Inference can be run as following:

 

We will continue to improve Neural Network Console.
We are also looking forward to getting requests from the users for further addition of functionalities!

Neural Network Console Windows
https://dl.sony.com/ja/app/
 

※1
As of its release date, projects using RandomFlip layer cannot be executed properly on Neural Network Console Cloud. This issue will be handled with the updates on the cloud version.

※2
On Neural Network Console Windows version 1.60, there may be cases where export to TensorFlow format (.pb) is not properly completed. We will handle this issue in near future.

※3
“Why Should I Trust You?”: Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin
https://arxiv.org/abs/1602.04938

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Neural Network Console TensorFlow LIME 推理插件 云计算
相关文章