MarkTechPost@AI 2024年11月26日
FunctionChat-Bench: Comprehensive Evaluation of Language Models’ Function Calling Capabilities Across Interactive Scenarios
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

FunctionChat-Bench是一个用于评估大型语言模型功能调用能力的基准测试方法,它超越了传统评估方法,通过构建包含单轮和多轮对话场景的700个评估项目数据集和自动化评估程序,更全面地考察了模型在不同交互场景下的性能。该方法重点关注模型在工具调用结果的传达、必要信息的请求以及用户交互处理等方面的能力,并揭示了模型在单轮和多轮对话场景下功能调用能力的差异,挑战了孤立工具调用场景下的高性能与整体交互能力直接相关的假设。FunctionChat-Bench为未来研究交互式AI系统提供了重要的参考依据。

🤔 **FunctionChat-Bench的提出是为了解决现有评估方法的局限性**: 现有的评估方法主要关注工具调用类型的输出,而忽略了人机对话交互的复杂性,FunctionChat-Bench则通过构建一个包含700个评估项目的丰富数据集来弥补这一缺陷,涵盖单轮和多轮对话场景。

🔄 **FunctionChat-Bench采用了双子集评估框架**: 包括单轮调用数据集和对话数据集,前者要求用户单轮话语包含所有必要信息,直接导致工具调用;后者则模拟更复杂的真实世界交互场景,挑战模型应对多样化输入的能力。

📊 **实验结果揭示了不同模型在不同场景下的功能调用性能**: 例如,Gemini模型在功能候选者数量增加时准确率提高,GPT-4-turbo在随机和接近功能类型场景下准确率存在显著差异。对话数据集则提供了工具调用生成、对话输出、槽填充问题以及多轮话语交互中的工具调用相关性检测等信息。

💡 **FunctionChat-Bench为评估大型语言模型的功能调用能力提供了一个更全面的框架**: 它利用高级LLM作为评估评判,并制定了细致的评分标准,为未来研究交互式AI系统奠定了基础。

⚠️ **FunctionChat-Bench也存在一些局限性**: 例如,在评估高级功能调用应用方面可能存在不足。

Function calling has emerged as a transformative capability in AI systems, enabling language models to interact with external tools through structured JSON object generation. However, current methodologies face critical challenges in comprehensively simulating real-world interaction scenarios. Existing approaches predominantly focus on generating tool-specific call messages, overlooking the nuanced requirements of human-AI conversational interactions. The complexity of tool-use dialogs extends beyond mere mechanical function invocation, demanding a more holistic approach that seamlessly navigates tool interactions and user communication. Thus, there is a need for more complex and adaptive function-calling frameworks that bridge the gap between technical precision and natural conversational dynamics.

Recent studies have increasingly focused on exploring how language models utilize tools, leading to the development of various benchmarks for evaluating their capabilities. Prominent evaluation frameworks like APIBench, GPT4Tools, RestGPT, and ToolBench have concentrated on developing systematic assessment methodologies for tool usage. Existing innovative approaches like MetaTool investigate tool usage awareness, while BFCL introduces function relevance detection. Despite these advancements, existing methodologies predominantly focus on generating tool call-type outputs, which do not directly interact with users. This narrow evaluation approach reveals a critical gap in comprehensively measuring language models’ interactive capabilities.

Researchers from Kakao Corp. / Sungnam, South Korea have proposed FunctionChat-Bench, a method to evaluate language models’ function calling capabilities across diverse interaction scenarios. This method addresses the critical limitations in existing evaluation methodologies by introducing a robust dataset comprising 700 assessment items and automated evaluation programs. Moreover, FunctionChat-Bench examines language models’ performance across single-turn and multi-turn dialogue contexts focusing on function-calling capabilities. It critically challenges the assumption that high performance in isolated tool call scenarios directly correlates with overall interactive proficiency.

The FunctionChat-Bench benchmark introduces a complex two-subset evaluation framework to evaluate the function calling capabilities of language models, (a) Single call dataset and (b) Dialog dataset. The following conditions define evaluation items in the Single call dataset:

In contrast, the Dialog dataset simulates more complex real-world interaction scenarios, challenging language models to navigate diverse input contexts. Key evaluation criteria for the proposed method include the model’s capacity to communicate tool invocation results, request missing information when necessary, and handle user interactions.

Experimental results from the FunctionChat-Bench reveal detailed insights into language models’ function calling performance across different scenarios. The accuracy of models did not consistently decrease by increasing the number of function candidates between 1 and 8 candidates. Notably, the Gemini model demonstrates improved accuracy as the number of function candidates increases. GPT-4-turbo shows a substantial 10-point accuracy difference between random and close function type scenarios. Moreover, the dialog dataset provides tool call generations, conversational outputs, slot-filling questions, and tool call relevance detection across multi-turn discourse interactions.

In this paper, researchers introduced FunctionChat-Bench, a benchmark that comprehensively evaluates language models’ function-calling capabilities, extending beyond traditional assessment methodologies. They provide detailed insights into language models’ generative performance by developing a novel dataset with Single call and Dialog subsets, and an automated evaluation program. Utilizing an advanced LLM as an evaluation judge with refined rubrics, FunctionChat-Bench offers a complex framework for evaluating function calling proficiency. However, this benchmark has limitations while evaluating advanced function calling applications. The study sets a foundation for future research, highlighting the complexity of interactive AI systems.


Check out the Paper and GitHub Page. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter.. Don’t Forget to join our 55k+ ML SubReddit.

Evaluation of Large Language Model Vulnerabilities: A Comparative Analysis of Red Teaming Techniques’ Read the Full Report (Promoted)

The post FunctionChat-Bench: Comprehensive Evaluation of Language Models’ Function Calling Capabilities Across Interactive Scenarios appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 功能调用 交互式AI FunctionChat-Bench 基准测试
相关文章