MarkTechPost@AI 2024年11月22日
Jina AI Introduces Jina-CLIP v2: A 0.9B Multilingual Multimodal Embedding Model that Connects Image with Text in 89 Languages
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Jina AI发布了Jina-CLIP v2,这是一个0.9B参数的多语言多模态嵌入模型,能够在89种语言中连接图像和文本。该模型解决了现有模型在处理多语言和高维数据方面的挑战,支持512×512分辨率的图像和最多8000个token的文本处理。此外,它还使用了Matryoshka表示法,将文本和图像的嵌入维度降低到64维,从而提高了效率并保留了关键的上下文信息。Jina-CLIP v2在多语言检索任务中表现出色,并能够有效降低语言模型的偏差,为电商、内容推荐和视觉搜索等领域提供更具包容性的AI解决方案。

🖼️ **支持89种语言的多语言能力:**Jina-CLIP v2能够处理89种语言的文本和图像,打破了语言障碍,让更多用户能够使用先进的多模态AI技术。它在多语言检索任务中表现出色,能够匹配甚至超越专门的文本模型。

💻 **高效的Matryoshka表示法:**该模型采用了Matryoshka表示法,将文本和图像的嵌入维度降低到64维,从而显著提高了嵌入效率,同时保留了关键的上下文信息。这使得Jina-CLIP v2能够在资源受限的环境中部署,例如移动设备。

🔎 **灵活的嵌入生成:**Jina-CLIP v2不仅支持大规模嵌入生成,还支持小规模嵌入生成,用户可以根据具体需求调整嵌入过程,满足不同计算资源和应用场景的需求。例如,它可以用于计算密集型深度学习任务或轻量级移动应用。

🚀 **文本编码器作为密集检索器:**Jina-CLIP v2的文本编码器可以独立运行,作为密集检索器,其性能与jina-embeddings-v3相当,后者是多语言嵌入基准测试(MTEB)中10亿参数以下模型的领先者。

🌍 **促进AI普惠与跨文化交流:**Jina-CLIP v2有助于减少语言模型的偏差,特别是对于使用小语种的用户,推动AI技术更加普惠和包容。它为电商、内容推荐、视觉搜索等领域带来了新的机遇,有助于促进跨文化交流和理解。

In an interconnected world, effective communication across multiple languages and mediums is increasingly important. Multimodal AI faces challenges in combining images and text for seamless retrieval and understanding across different languages. Existing models often perform well in English but struggle with other languages. Additionally, handling high-dimensional data for both text and images simultaneously has been computationally intensive, limiting applications for non-English speakers and scenarios requiring multilingual contexts.

Jina-CLIP v2: A 0.9B Multilingual Multimodal Embedding Model

Jina AI has introduced Jina-CLIP v2—a 0.9B multilingual multimodal embedding model that connects images with text in 89 languages. Jina-CLIP v2 supports a wide range of languages, addressing the limitations that have previously restricted access to advanced multimodal AI technologies. It handles images at a resolution of 512×512 and processes text with up to 8,000 tokens, providing an effective solution for linking images and multilingual text. Additionally, it offers Matryoshka representations that reduce embeddings to 64 dimensions for both text and images, ensuring more efficient embeddings while retaining essential contextual information.

Technical Details

Jina-CLIP v2 stands out for its flexibility and efficiency. It enables embedding generation not only at a large dimensional scale but also at smaller scales, with its Matryoshka representation feature reducing embeddings to 64 dimensions. This allows users to adjust the embedding process to meet specific requirements, whether for computationally intensive deep learning tasks or lightweight mobile applications. Furthermore, the model’s text encoder can operate independently as a dense retriever, matching the performance of jina-embeddings-v3—the current leader for multilingual embeddings under 1 billion parameters on the Multilingual Text Embeddings Benchmark (MTEB). The versatility to perform both retrieval and classification tasks makes Jina-CLIP v2 suitable for a variety of use cases, from multilingual search engines to context-aware recommendation systems.

Jina-CLIP v2 represents an important step in reducing biases in language models, particularly for users relying on less widely spoken languages. In evaluations, the model performed well in multilingual retrieval tasks, demonstrating its capability to match or exceed the performance of specialized text models. Its use of Matryoshka representations ensures that embedding calculations can be performed efficiently without sacrificing accuracy, enabling deployment in resource-constrained environments. Jina-CLIP v2’s ability to connect text and images across 89 languages opens new possibilities for companies and developers to create AI that is accessible to diverse users while maintaining contextual accuracy. This can significantly impact applications in e-commerce, content recommendation, and visual search systems, where language barriers have traditionally posed challenges.

Conclusion

Jina-CLIP v2 is a meaningful advancement in multilingual multimodal models, addressing both linguistic diversity and technical efficiency in a unified approach. By enabling effective image and text connectivity across 89 languages, Jina AI is contributing to more inclusive AI tools that transcend linguistic boundaries. Whether for retrieval or classification tasks, Jina-CLIP v2 offers flexibility, scalability, and performance that empower developers to create robust and efficient AI applications. This development is a step forward in making AI accessible and effective for people around the world, fostering cross-cultural interactions and understanding.


Check out the details here. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter.. Don’t Forget to join our 55k+ ML SubReddit.

[FREE AI VIRTUAL CONFERENCE] SmallCon: Free Virtual GenAI Conference ft. Meta, Mistral, Salesforce, Harvey AI & more. Join us on Dec 11th for this free virtual event to learn what it takes to build big with small models from AI trailblazers like Meta, Mistral AI, Salesforce, Harvey AI, Upstage, Nubank, Nvidia, Hugging Face, and more.

The post Jina AI Introduces Jina-CLIP v2: A 0.9B Multilingual Multimodal Embedding Model that Connects Image with Text in 89 Languages appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Jina-CLIP v2 多模态 多语言 嵌入模型 AI
相关文章