MarkTechPost@AI 2024年11月22日
BONE: A Unifying Machine Learning Framework for Methods that Perform Bayesian Online Learning in Non-Stationary Environments
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

研究者提出BONE框架,用于动态环境中的贝叶斯在线学习,解决多种挑战,开发了相关算法并进行实验评估,该框架具有灵活性和创新潜力。

🎯BONE是用于动态环境贝叶斯在线学习的统一框架

💻开发多种算法用于估计模型参数和辅助变量

🔬对算法进行实验评估,RL[1]-OUPR*表现优越

🚀BONE框架具有灵活性和创新潜力,未来将拓展应用

In this paper, researchers from Queen Mary University of London, UK, University of Oxford, UK, Memorial University of Newfoundland, Canada, and Google DeepMind Moutain View, CA, USA proposed a unifying framework, BONE (Bayesian Online learning in Non-stationary Environments) for Bayesian online learning in dynamic settings. BONE addresses challenges such as online continual learning, prequential forecasting, and contextual bandits. It requires three modeling components: a model for measurements, an auxiliary process to model non-stationarity and a conditional prior over model parameters. Moreover, two algorithms are also developed to estimate beliefs about model parameters and auxiliary variables, framing existing methods as instances of BONE and facilitating new method development.

The developed algorithms for estimating Gaussian posterior densities are essential for the BONE framework, focusing on practical Bayesian approximation methods including Conjugate updates (Cj),  Linear-Gaussian approximation (LG), and  Variational Bayes (VB). The Cj utilizes matching functional forms of priors and measurement models for analytically tractable recursive updates. LG methods extend this by approximating measurement models with linear Gaussians, whereas Variational Bayes (VB) minimizes the (Kullback-LeiblerKL) divergence to approximate posteriors using computationally efficient parametric families. Alternative methods, such as sequential Monte Carlo (SMC) and ensemble Kalman filters (EnKF), offer flexibility for non-linear or high-dimensional scenarios, enhancing posterior accuracy.

The weighting function for the auxiliary variable in the BONE framework is classified into discrete auxiliary variables (DA) and continuous auxiliary variables (CA). For DA, the variable assumes discrete values with weights computed using a fixed number of hypotheses or an increasing number. Low-memory variants restrict computations to a subset of a space with cardinality where each element is called a hypothesis. Alternative ad-hoc rules, such as mixtures of experts, provide simpler weighting without exact Bayesian solutions. Another special case, used by the researchers is the Discrete auxiliary variable with greedy hypothesis selection where they used a single hypothesis. For CA, computational complexity necessitates approximations for certain transition densities.

Researchers conducted experimental evaluations of the developed algorithms within the BONE framework across various tasks, with a warmup period for hyperparameter selection followed by a deployment phase for sequential predictions and updates. Each experiment fixes the measurement model and posterior inference method while comparing different choices for auxiliary variables, priors, and weighting. Moreover, Diverse methods are tested, with the number of hypotheses in data-assimilation (DA) methods explicitly noted (e.g., RL[1]-PR for one hypothesis, RL[K]-PR for K hypotheses, RL[inf]-PR for all).

The performance of algorithms C-ACI, CPP-OU, RL[1]-PR, and RL[1]-OUPR is evaluated on a 10-armed Bernoulli bandit task over 10,000 steps across 100 simulations. Each arm’s payoff follows a Bernoulli distribution with a dynamic probability, modeled with additive noise and bounded within [0, 1]. Results show RL[1]-OUPR achieving the lowest RMSE, indicating superior accuracy. Error analysis highlights RL[1]-PR’s false positives in changepoints causing prediction breaks, and RL-MMPR’s slower adaptation for certain ranges. Further, RL[1]-OUPR balances rapid adaptation and stability in an effective way.

In conclusion, researchers introduced BONE, which stands for Bayesian Online learning in Non-stationary Environments. This framework integrates Bayesian methods for online predictions in non-stationary environments, covering numerous existing approaches. It also requires two algorithmic choices, which are:

The framework also facilitates the development of RL[1]-OUPR, a novel approach designed to handle abrupt and gradual changes in observations. This paper highlights the BONE’s flexibility and potential for innovation in addressing complex prediction challenges. Future exploration aims to develop new variants and expand its applications, underscoring the framework’s broader utility in dynamic, real-world scenarios.


Check out the paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter.. Don’t Forget to join our 55k+ ML SubReddit.

[FREE AI VIRTUAL CONFERENCE] SmallCon: Free Virtual GenAI Conference ft. Meta, Mistral, Salesforce, Harvey AI & more. Join us on Dec 11th for this free virtual event to learn what it takes to build big with small models from AI trailblazers like Meta, Mistral AI, Salesforce, Harvey AI, Upstage, Nubank, Nvidia, Hugging Face, and more.

The post BONE: A Unifying Machine Learning Framework for Methods that Perform Bayesian Online Learning in Non-Stationary Environments appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

BONE 贝叶斯在线学习 算法 实验评估
相关文章