Jina AI 2024年10月24日
搞大模型,没有重排工具怎么行?
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

检索增强生成(RAG)技术通过为大型语言模型(LLM)提供额外的最新知识来增强其能力,但一些企业用户对上下文相关性和问答准确度提出了更高要求,需要更复杂的架构。重排器(Reranker)作为信息检索(IR)生态系统的重要组成部分,能够评估搜索结果并进行重新排序,提升查询结果相关性。在 RAG 应用中,重排器主要在向量查询结果后使用,能够更有效地确定文档和查询之间的语义相关性,更精细地对结果重排,最终提高搜索质量。目前,重排器主要分为基于统计和基于深度学习模型的两种类型。

🤔 **基于统计的重排器**:汇总多个来源的候选结果列表,使用多路召回的加权得分或倒数排名融合算法来为所有结果重新算分,统一将候选结果重排。这种类型重排器的优势是计算不复杂,效率高,因此广泛用于对延迟较敏感的传统搜索系统中。

🤖 **基于深度学习模型的重排器**:通常被称为 Cross-encoder Reranker。经过特殊训练的神经网络可以很好地分析问题和文档之间的相关性,这类重排器可以为问题和文档之间的语义相似度进行打分,适用于单路召回和多路召回。

🚀 **重排器在 RAG 应用中的作用**:显著提高生成答案的精确度,因为重排器能够在单路或多路的召回结果中挑选出和问题最接近的文档。此外,扩大检索结果的丰富度配合精细化筛选最相关结果还能进一步提升最终结果质量。

💰 **重排器带来的优势**:排除掉和问题关系不大的内容,缩短上下文,LLM 能够更“关注”上下文中的所有内容,避免忽略重点内容,还能节省推理成本。特别适合追求回答高精度和高相关性的场景,例如专业知识库或者客服系统等应用。

⚠️ **重排器的局限性**:虽然重排器可以提高检索相关性,但也增加了延迟和计算成本,需要在检索质量、搜索延迟、使用成本之间进行权衡。

💡 **三种重排工具**:Cohere Rerank、BGE Re-Ranker、Jina Reranker。Cohere Rerank 是商业闭源的,BGE Re-Ranker 是智源研究院推出的开源模型,Jina Reranker v2 支持 100 多种语言,适配了不同应用场景对于排序的任务的支持,是名副其实的多才多艺模型,尤其适用于检索增强生成(RAG)场景。

OSC 开源社区 2024-08-07 17:14 北京

8 月 15 日,GOTC 2024,我们上海张江见!

在说重排工具之前,我们要先了解一下 RAG。

检索增强生成(RAG)是一种新兴的 AI 技术栈,通过为大型语言模型(LLM)提供额外的 “最新知识” 来增强其能力。

基本的 RAG 应用包括四个关键技术组成部分:

上述的基础 RAG 架构可以有效解决 LLM 产生 “幻觉”、生成内容不可靠的问题。

但是,一些企业用户对上下文相关性和问答准确度提出了更高要求,需要更为复杂的架构。一个行之有效且较为流行的做法就是在 RAG 应用中集成 Reranker。

什么是 Reranker?

Reranker (重排器)是信息检索(IR)生态系统中的一个重要组成部分,用于评估搜索结果,并进行重新排序,从而提升查询结果相关性。

在 RAG 应用中,主要在拿到向量查询(ANN)的结果后使用重排器,能够更有效地确定文档和查询之间的语义相关性,更精细地对结果重排,最终提高搜索质量。

目前,重排器类型主要有两种 —— 基于统计和基于深度学习模型的 Reranker:

基于统计的重排器会汇总多个来源的候选结果列表,使用多路召回的加权得分或倒数排名融合(RRF)算法来为所有结果重新算分,统一将候选结果重排。这种类型的重排器的优势是计算不复杂,效率高,因此广泛用于对延迟较敏感的传统搜索系统中。

基于深度学习模型的重排器,通常被称为 Cross-encoder Reranker。由于深度学习的特性,一些经过特殊训练的神经网络可以非常好地分析问题和文档之间的相关性。这类重排器可以为问题和文档之间的语义的相似度进行打分。因为打分一般只取决于问题和文档的文本内容,不取决于文档在召回结果中的打分或者相对位置,这种重排器既适用于单路召回也适用于多路召回。

将重排器整合到 RAG 应用中,可以显著提高生成答案的精确度,因为重排器能够在单路或多路的召回结果中挑选出和问题最接近的文档。

此外,扩大检索结果的丰富度(例如多路召回)配合精细化筛选最相关结果(Reranker)还能进一步提升最终结果质量。

使用重排器可以排除掉第一层召回中和问题关系不大的内容,将输入给大模型的上下文范围进一步缩小到最相关的一小部分文档中。

通过缩短上下文, LLM 能够更 “关注” 上下文中的所有内容,避免忽略重点内容,还能节省推理成本。

追求回答高精度和高相关性的场景中,特别适合使用重排器,例如专业知识库或者客服系统等应用。因为这些应用中的查询都具有很高的商业价值,提升回答准确性的优先级远高于系统性能和控制成本。使用重排器能够生成更准确的答案,有效提升用户体验。

重排器在提高检索相关性的同时,也会增加延迟和计算成本。因此,在检索质量、搜索延迟、使用成本之间进行权衡之后,当前可选择的重排工具并不多,下面介绍三款:Cohere Rerank 、 BGE Re-Ranker、Jina Reranker

Cohere Rerank

Cohere Rerank 是在业界被广泛使用的重排工具,它通常集成在 LangChain 和 LlamaIndex 框架中,使用相对简单。

其背后公司 Cohere 的来头不简单。Cohere 成立于 2019 年,由曾在 Google Brain 和 Cortex 工作的研究人员和工程师创立,其联合创始人之一 Aidan Gomez,是 Transformers 架构的作者之一。

根据不完全统计,Cohere 累计融资已经超过 4.45 亿美元。今年 3 月,还爆出 Cohere 的新一轮融资已进入后期谈判阶段,筹集超 5 亿美元资金,估值有望达到 50 亿美元。

今年 4 月, Cohere 发布了 Rerank 3,各方面都提升了不少,包括:

不过,它是商业闭源的。原本每 1000 次搜索,用户需要花费 1 美元,在升级到 Rerank 3 之后,每 1000 次搜索,需要 2 美元。

BGE Re-Ranker

BGE Re-Ranker 是智源研究院推出检索排序模型,今年 3 月发布了 2.0 版本。

该模型是智源团队在 BGE 系列基础上的新尝试。BGE(BAAI General Embedding)是智源研究院打造的通用语义向量模型。

自 2023 年 8 月发布以来,智源团队陆续发布了中英文模型 BGE v1.0、v1.5 以及多语言模型 BGE-M3。

BGE Re-Ranker v2.0 系列排序模型采用了两种不同尺寸的模型基座:

来看看 BGE Re-Ranker 2.0 的特性:

开源模型现已通过 Hugging Face、Github 等平台发布,采用免费、商用许可的开源协议:

https://github.com/FlagOpen/FlagEmbeddinghttps://huggingface.co/BAAI 

截至今年 3 月,BGE 系列模型全球下载量超过 1500 万,位居国内开源 AI 模型首位。BGE-M3 模型一度跃居 Hugging Face 热门模型前三,其所属代码仓库 FlagEmbedding 位居 GitHub 热门项目前 10;BGE-M3 所带来的全新的通用检索模式也相继被 Milvus、Vespa 等主流向量数据库集成。

Jina Reranker

Jina Reranker v2 在今年 6 月发布,支持 100 多种语言,适配了不同应用场景对于排序的任务的支持,是名副其实的多才多艺模型,尤其适用于检索增强生成(RAG)场景。通过对训练数据的极致蒸馏,模称得上短小精悍,输出稳定,不挑活。

Jina Reranker v2 的主要优势:

Jina Reranker v2 的特性:

Jina Reranker v2 的应用方式:

Jina Reranker 前 100 万个 token 可以免费。10 亿 个 token 是 20 美元,110 亿个 token 为 200 美元,并且该 Token 可以与 Jina AI 其他模型通用。

8 月 15 日至 16 日,GOTC 2024 大会将于 上海张江科学会堂 举行。

在 “硬核 AI 技术创新与实践” 论坛,Jina AI 高级算法工程师付杰将分享 Jina AI 如何通过 reranker 优化搜索结果,主要讲解 reranker 背后的开发流程,包括在多语言、长 context 场景下模型的训练,模型数据的筛选与挖掘,模型性能的评测,以及在 RAG 场景下 reranker 模型如何帮助用户提升检索生成的效果。

GOTC 2024 与上海浦东软件园联合举办,并结合 “GOTC(全球开源技术峰会)” 与 “GOGC(全球开源极客嘉年华)”,旨在打造一场全新的开源盛会。

全球开源技术峰会(Global Open-source Technology Conference,简称 GOTC)始于 2021 年,是面向全球开发者的开源技术盛会;2024 全球开源极客嘉年华(GOGC 2024)由浦东软件园携手 S 创共建,与开源中国、Linux 基金会等品牌联合呈现。

此次大会将集结全球范围内对开源技术充满热情的开发者、社区成员、创业者、企业领袖、媒体人,以及各开源项目应用场景的产业精英、跨界才俊与年轻力量。通过主题演讲、圆桌讨论、创新集市、人才集市、黑客松、技术展示和互动工作坊等形式,与会者将有机会交流实践经验、探索前沿技术,让我们一起激发创新活力、展示开源魅力、促进跨领域合作。

GOTC 2024 报名通道现已开启,诚邀全球各技术领域开源爱好者共襄盛举!

扫码或长按识别二维码

更多大会信息,访问官网查看:

https://gotc.oschina.net


参考文章:

1、提高 RAG 应用准确度,时下流行的 Reranker 了解一下  

 https://cloud.tencent.com/developer/article/2410324

2、Cohere AI 推出 Rerank 3:旨在优化企业搜索和 RAG(检索增强生成)系统的先进模型

https://medium.com/@bitrise.co.in/cohere-ai-unveils-rerank-3-a-state-of-the-art-model-designed-to-optimize-enterprise-search-and-rag-fe32a2da5533

3、RAG 再添新利器!智源开源最强检索排序模型 BGE Re-Ranker v2.0

https://mp.weixin.qq.com/s/XnkQFCdbvjox1Y06IbIlYw

跳转微信打开

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

RAG 重排器 Reranker 检索增强生成 信息检索 AI 技术 深度学习 Cohere Rerank BGE Re-Ranker Jina Reranker
相关文章