Mashable 2024年10月19日
NASA just found places where microbial Martians might be able to thrive
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

NASA研究发现,火星上存在小的潜在可居住区域,理论上生命可在此将阳光、水和二氧化碳转化为氧气。研究表明,火星热带地区的环境可能有小融水袋,类似地球冰川内的特征。团队认为微生物等简单生命形式可能在火星赤道附近的冰层下找到庇护所,且通过计算机模拟证明了火星冰层中可能存在宜居带。

🌏火星上存在一些被认为是布满灰尘的冰层的区域,在这些区域中可能存在小融水袋,类似地球冰川内的特征,且微生物等简单生命形式可能在火星赤道附近的冰层下找到庇护所。

💻通过计算机模拟,研究团队证明在含有特定灰尘的火星冰层中可能存在宜居带,适量的阳光可穿透冰层,使冰层下的融水袋中发生光合作用。

🌞在地球上,冰中的灰尘可形成所谓的冰尘洞,吸收阳光并融化周围形成小水池,充满生命。而在火星上,厚厚的冰层可吸收有害辐射,同时让足够光线通过使光合作用得以进行。

Scientists have discovered small, potentially habitable areas on Mars where life could, in theory, transform sunlight, water, and carbon dioxide into oxygen, according to a new NASA study. 

Though the research doesn't mean photosynthetic aliens are indeed living in these environments now — or even that they were there in the past — the findings provide the U.S. space agency with attractive targets for future searches.

For years, NASA's Mars Reconnaissance Orbiter — a spacecraft circling the Red Planet — has seen white material lining dry gullies thought to be dusty water ice. This environment in the Martian tropics could be mottled with small pockets of meltwater, similar to features found within glaciers on Earth. 

A team has proposed that simple lifeforms like microbes could potentially find refuge up to 10 feet below the Red Planet's surface in these ice deposits found near the Martian equator. 

"If we’re trying to find life anywhere in the universe today, Martian ice exposures are probably one of the most accessible places we should be looking," said Aditya Khuller, lead author of the study, in a statement

NASA’s Mars Reconnaissance Orbiter spots several gullies tipped in white, believed to be areas of dusty ice. Credit: NASA / JPL-Caltech / University of Arizona

Over the course of several ice ages spanning eons, snow mixed with dust fell on the ground of Mars, a world an average of 140 million miles away. That ancient snow — now ice — still contains flecks of dust.

Through computer simulations, the team demonstrated that a habitable zone could exist on Mars in ice with such dust. Their paper, published in the journal Communications Earth & Environment, suggests that just the right amount of sunlight could penetrate the ice to allow photosynthesis to occur in pockets of meltwater below an icy layer.

But why, pray tell, does a pinch of dirt matter? 

NASA’s Mars Reconnaissance Orbiter flies over a gully believed to have areas of dusty ice similar to those modeled in the study. Credit: NASA / JPL-Caltech / University of Arizona

On Earth, dust within ice can form so-called cryoconite holes — small areas where dust carried by wind lands on the ground, absorbs sunlight, warms up, and then melts deeper into the ice each summer. Eventually the particles stop sinking, but they continue to create enough heat to melt small pools of water around them. 

And when this process happens here, the water holes tend to be brimming with life, hosting entire ecosystems: algae, fungi, and microscopic cyanobacteria, for instance, all of which get their energy from photosynthesis. 

"This is a common phenomenon on Earth," said co-author Phil Christensen of Arizona State University. "Dense snow and ice can melt from the inside out, letting in sunlight that warms it like a greenhouse, rather than melting from the top down."

On Mars, where there isn't a protective magnetic field enveloping the planet, the sun beats down on the world with high levels of toxic radiation. But a thick slab of ice could absorb the rays, protecting biology below the surface, while allowing enough light to pass through it and enable photosynthesis. 

Though the environment at Mars' poles would likely be too cold for cryoconite holes to form beneath ice, the planet's tropics may present the right conditions. During the NASA study, scientists learned that too much schmutz in the ice would make for a very small habitable zone, of perhaps just 2 to 15 inches below ground. In clearer ice, that zone could potentially extend to 10 feet deep. 

Scientists are excited about these findings because they provide a sort of liquid water loophole for Mars. The planet has such thin and dry air, water ice is thought to "sublimate," converting directly from a solid to vapor, at its surface. But the problems presented by Mars' atmosphere for ice to melt into water don't exist below a glacier or tightly packed snow.

The team plans to map out the most likely spots on Mars where shallow meltwater could exist. These may become some of the most enticing locations on the Red Planet for future astronauts to explore.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

火星 宜居带 冰层 光合作用
相关文章