MarkTechPost@AI 2024年10月15日
MIBench: A Comprehensive AI Benchmark for Model Inversion Attack and Defense
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

MIBench是哈尔滨工业大学(深圳)和清华大学研究者推出的首个MI领域基准,旨在解决现有MI攻击和防御缺乏全面、统一、可靠基准的问题。它将MI攻击和防御流程拆分为四个模块,涵盖多种方法和评估协议,并在两个模型上进行测试。该基准虽有助于MI领域发展,但也可能被有害用户利用,需加强防御策略。

🧐MIBench的背景与意义:MI攻击是对机器学习和深度学习模型的隐私攻击,现有攻击和防御方法缺乏可靠基准,MIBench的出现旨在填补这一空白。

📦MIBench的构成:将MI攻击和防御流程拆分为数据预处理、攻击方法、防御策略和评估四个主要模块,构建了一个可扩展的模块化工具箱。

💪MIBench的测试与结果:在IR-152和ResNet-152两个模型上使用公共和私有数据集进行测试,一些方法显示出高准确性,部分方法生成的图像更真实,但当前防御策略效果有限。

⚠MIBench的潜在影响与应对:可能被有害用户利用来重现私人数据,需应用强可靠的防御策略,设置访问控制并限制用户访问数据的频率。

A Model Inversion (MI) attack is a type of privacy attack on machine learning and deep learning models, where an attacker tries to invert the model’s outputs to recreate privacy-sensitive training data that was used during training including the leakage of private images in face recognition models, sensitive health details in medical data, financial information such as transaction records and account balances, and personal preferences and social connections in social media data, etc. raising widespread concerns about privacy threats of Deep Neural Networks (DNNs). Unfortunately, as MI attacks have become advanced, there hasn’t been a complete and reliable way to test and compare these attacks, making it difficult to evaluate the security of the model. This deficiency leads to inadequate comparisons between different attack methods and inconsistent experimental setups. Additionally, the absence of unified experimental protocols results in a fragmented landscape where there is less validity and fairness in the comparative studies. 

Until now it was very hard to find any such benchmark that could measure a model’s potential to defend itself against such threats. Although to defend against MI attacks, most existing methods can be categorized into two types: model output processing and robust model training. Model output processing refers to reducing the private information carried in the victim model’s output to promote privacy. Yang et al. propose to train an autoencoder to purify the output vector by decreasing its degree of dispersion. Wen et al. apply adversarial noises to the model output and confuse the attackers. Ye et al. leverage a differential privacy mechanism to divide the output vector into multiple sub-ranges. Robust model training refers to incorporating defense strategies during the training process. MID Wang et al. penalizes the mutual information between model inputs and outputs in the training loss, thus reducing the redundant information carried in the model output that may be abused by the attackers.

Existing MI attacks and defenses lack a comprehensive, aligned, and reliable benchmark, resulting in inadequate comparisons and inconsistent experimental setups. Thus researchers introduced a benchmark to measure the potential and determine the vulnerability of the model against such Model Inversion attacks.

To alleviate these problems, researchers from the UniHarbin Institute of Technology (Shenzhen) and  Tsinghua University introduced the first benchmark in the MI field, named MIBench. For building an extensible modular-based toolbox, they disassemble the pipeline of MI attacks and defenses into four main modules, each designated for data preprocessing, attack methods, defense strategies, and evaluation, enhancing this merged framework’s extensibility. The proposed MIBench has encompassed a total of 16 methods comprising 11 attack methods and 4 defense strategies, coupled with 9 prevalent evaluation protocols to adequately measure the comprehensive performance of individual MI methods and with a focus on Generative Adversarial Network (GAN)-based MI attacks. Based on the accessibility to the target model’s parameters, researchers categorized MI attacks into white-box and black-box attacks. White-box attacks can entail full knowledge of the target model, enabling the computation of gradients for performing backpropagation, while black-box attacks are constrained to merely obtaining the prediction confidence vectors of the target model. The MIBench benchmark includes 8 white-box attack methods and 4 black-box attack methods. 

 Overview of the basic structure of modular-based toolbox for MIB benchmark

The researchers tested MI attack strategies on two models (IR-152 for low and ResNet-152 for high resolution) using public and private datasets. Parameters like Accuracy, Feature Distance, and FID were used to compare white-box and black-box attacks to validate the method. Strong methods like PLGMI and LOKT showed high accuracy, while PPA and C2FMI produced more realistic images, especially in higher resolution. It was observed by the researchers that the effectiveness of MI attacks increased with the model’s predictive power. Current defense strategies were not fully effective, highlighting the need for better methods to protect privacy without reducing model accuracy.

In conclusion, the reproducible benchmark will facilitate the further development of the MI field and bring more innovative explorations in the subsequent study. In the future, MIBench could provide a unified, practical and extensible toolbox and is widely utilized by researchers in the field to rigorously test and compare their novel methods, ensuring equitable evaluations and thereby propelling further advancements in future development.

However, a possible negative impact of the MIB benchmark is that harmful users could use the attack methods to recreate private data from public systems. To address this, data users need to apply strong and reliable defense strategies and methods. Additionally, setting up access controls and limiting how often each user can access the data is important for building responsible AI systems, and reducing potential conflicts with people’s private data.


Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter.. Don’t Forget to join our 50k+ ML SubReddit.

[Upcoming Live Webinar- Oct 29, 2024] The Best Platform for Serving Fine-Tuned Models: Predibase Inference Engine (Promoted)

The post MIBench: A Comprehensive AI Benchmark for Model Inversion Attack and Defense appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MIBench 模型反转攻击 防御策略 基准测试
相关文章