MarkTechPost@AI 2024年10月10日
Dynamic Contrastive Decoding (DCD): A New AI Approach that Selectively Removes Unreliable Logits to Improve Answer Accuracy in Large Vision-Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

大型视觉语言模型 (LVLMs) 在捕获和推理多模态输入方面展现出了令人印象深刻的能力,可以处理图像和文本。虽然 LVLMs 在理解和描述视觉内容方面令人印象深刻,但由于其视觉和语言组件之间存在不一致,它们有时会面临挑战。这是由于处理图像的部分和处理语言的部分可能存储了不同的信息,导致其输出之间发生冲突。还发现,当被问及有关以两种不同模态呈现的同一实体的问题时,LVLM 会提供两个相互矛盾的答案。这种跨模态参数知识冲突是有害的,因为它阻碍了 LVLM 的性能。 对于大型视觉语言模型 (LVLMs),当前方法已在解释多模态输入方面显示出能力,但它们面临挑战,因为跨模态参数知识会造成冲突。现有的研究主要集中在优化单个模型组件,但没有强调这些冲突。虽然本文引用了许多有助于理解和解决这些问题的研究和数据集,但本文是首篇定义和研究 LVLM 中跨模态参数知识冲突的论文。 来自加州大学戴维斯分校、法丹大学、南加州大学和德克萨斯 A&M 大学的研究人员团队开发了一种动态对比解码 (DCD) 方法来解决大型视觉语言模型 (LVLMs) 中的跨模态参数知识冲突。在这种方法中,使用了对比解码的想法,其中将不需要的预测 (logits) 从原始预测中移除,以减少冲突。动态对比解码 (DCD) 方法通过添加答案置信度作为因素来改变此过程,以帮助调整预测。这种方法通过将置信度作为关键因素来改变对比解码的工作方式,并有助于更准确地衡量文本和图像之间信息差异。由于并非所有模型都提供生成内容的 logits,因此研究人员还为那些模型引入了两种基于提示的 (即提醒提示、答案提示) 改进策略。 在性能方面,该方法在 ViQuAE 和 InfoSeek 等数据集上显示出良好的结果。在实验中,当在 LLaVA-34B 模型上测试时,它在 ViQuAE 数据集上的准确率提高了 2.36%,在 InfoSeek 数据集上的准确率提高了 2.12%。 总之,本研究论文介绍了 LVLM 中跨模态参数知识冲突的概念。它提出了一种系统的方法来检测这些冲突,揭示了所有模型大小都存在持续的高冲突率。调查结果表明,简单地扩展模型并不能解决这些冲突,突出了有针对性的干预策略的必要性。动态对比解码 (DCD) 选择性地移除不可靠的 logits 以提高答案准确率。对于无法访问 logits 的模型,两种基于提示的策略 (即提醒提示、答案提示) 给出了取决于模型大小的结果,因此得出结论,大型模型具有更多理解和掌握提供给它们知识的能力。未来,这种方法可用于多模态数据,以提高其准确性并优化其输出。

🤯 **跨模态参数知识冲突:** 研究发现,大型视觉语言模型 (LVLMs) 在处理图像和文本时,由于其视觉和语言组件之间存在不一致性,导致其输出之间发生冲突,进而影响模型的性能。这种问题被称为“跨模态参数知识冲突”。

💡 **动态对比解码 (DCD) 方法:** 研究人员提出了一种名为“动态对比解码 (DCD)”的方法来解决跨模态参数知识冲突。DCD 通过选择性地移除不可靠的 logits(模型预测中的概率值)来减少冲突,并通过引入答案置信度作为因素来调整预测,从而提高模型的准确性。

💪 **实验结果:** 在 ViQuAE 和 InfoSeek 等数据集上进行的实验表明,DCD 方法在 LLaVA-34B 模型上的准确率分别提高了 2.36% 和 2.12%,证明了其有效性。

🚀 **未来展望:** DCD 方法有望在多模态数据领域得到更广泛的应用,以提高模型的准确性和优化其输出。

💻 **代码开源:** 研究人员已将 DCD 方法的代码开源,供其他研究人员参考和使用。

📚 **相关论文:** 本研究论文已发表在 arXiv 上,并可在 arXiv 网站上获取。

🙏 **致谢:** 本研究成果归功于该项目的研究人员。

🤝 **社交媒体:** 欢迎关注 MarkTechPost 的 Twitter、Telegram 和 LinkedIn 账号,了解更多人工智能领域的最新资讯。

📧 **订阅:** 订阅 MarkTechPost 的邮件列表,获取更多精彩内容。

Large Vision-Language Models (LVLMs) have demonstrated impressive capabilities for capturing and reasoning over multimodal inputs and can process both images and text. While LVLM are impressive at understanding and describing visual content, they sometimes face challenges due to inconsistencies between their visual and language components. This happens due to the part that handles images and the part that processes language may have different stored information, leading to conflicts between their outputs. It has also been found that when asked a question about the same entity presented in two different modalities, the LVLM provides two contradictory answers. This cross-modality parametric knowledge conflict is detrimental as it hinders the performance of LVLM. 

For Large Vision-Language Models (LVLMs), current methods have shown capabilities in interpreting multimodal inputs but they face challenges as cross-modality parametric knowledge creates conflicts. Existing research has primarily focused on optimizing individual model components but has not emphasized these conflicts. This paper is the first-of-its-kind work to define and study cross-modality parametric knowledge conflicts in LVLMs although it cites numerous studies and datasets that have contributed to understanding and addressing these issues. 

A team of researchers from the University of California (Davis), Fadan University, the University of Southern California, and Texas A&M University developed a dynamic contrastive decoding (DCD) method to solve cross-modality parametric knowledge conflicts in Large Vision-Language Models (LVLMs). In this method, the idea of contrastive decoding is used, in which the unwanted predictions (logits) are taken away from the original predictions to lessen conflicts. The dynamic contrastive decoding (DCD) method changes this process by adding answer confidence as a factor to help adjust the predictions. This approach changes the way contrastive decoding works by including confidence as the key factor and helps to measure the differences in information between the text and the images more accurately. Since not all models provide the logits of the generated contents, the researchers also introduced two prompt-based(i.e. Reminder prompt, Answer prompt) improvement strategies for those models.

In terms of performance, the method has shown good results on datasets like ViQuAE and InfoSeek. In experiments, it improved accuracy by 2.36% on the ViQuAE dataset and 2.12% on the InfoSeek dataset when tested on the LLaVA-34B model

In conclusion, this research paper introduced the concept of cross-modality parametric knowledge conflicts in LVLMs. It proposed a systematic approach to detect these conflicts, revealing a persistently high conflict rate across all model sizes. The findings indicate that simply scaling up models does not resolve these conflicts, highlighting the need for targeted intervention strategies. The dynamic contrastive decoding (DCD), selectively removes unreliable logits to improve answer accuracy. For models without access to logits, the two prompt-based strategies (i.e. Reminder prompt, Answer prompt) gave results depending on the size of the model, thus concluding that the large models have more ability to understand and grasp the knowledge provided to them. In the future, this method can be used in multimodal data to increase their accuracy and optimize their output.


Check out the Paper and GitHub. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter.. Don’t Forget to join our 50k+ ML SubReddit

[Upcoming Event- Oct 17 202] RetrieveX – The GenAI Data Retrieval Conference (Promoted)

The post Dynamic Contrastive Decoding (DCD): A New AI Approach that Selectively Removes Unreliable Logits to Improve Answer Accuracy in Large Vision-Language Models appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型视觉语言模型 跨模态参数知识冲突 动态对比解码 DCD 人工智能
相关文章