智源社区 2024年10月09日
重要的事情说两遍!Prompt「复读机」,显著提高LLM推理能力
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

近年来,人工智能领域的研究人员一直在探索如何提高大型语言模型 (LLM) 的推理能力。这篇论文提出了一种名为“重读”(Re-reading,RE2)的新技术,通过简单地将输入问题重复一遍,显著提升了LLM的推理能力。该技术基于人类的学习习惯,认为重复阅读有助于理解信息,并通过实验证明了其有效性。研究人员在 14 个数据集上进行了 112 个实验,涵盖了算术、常识和符号推理任务,结果表明 RE2 在各种场景下均能带来显著的性能提升。此外,RE2 还可以与其他推理技巧,如思维链 (CoT) 和自我一致性 (SC) 方法结合使用,进一步增强模型的推理能力。

🤔 **重读机制:提升LLM理解力** 传统上,LLM 使用单向注意力机制,限制了 token 对问题的全局理解。RE2 受到人类重复阅读习惯的启发,通过两次处理问题,促进了单向解码器的双向编码,增强了 LLM 对问题的理解。实验结果表明,RE2 显著提高了 LLM 对问题的注意力分配,每个 token 都能关注到问题中的其他 token,实现了对问题的双向理解。

📈 **RE2 提升推理性能:多数据集验证** 研究人员在 14 个数据集上进行了 112 个实验,涵盖了算术、常识和符号推理任务。实验结果表明,RE2 在大多数场景下都能带来显著的性能提升,无论是在指令调整的模型 (如 ChatGPT) 还是未经调整的模型 (如 LLaMA) 上。此外,RE2 还可以与其他推理技巧结合使用,进一步增强模型的推理能力。

💡 **RE2 的应用和未来方向** RE2 作为一种简单易用的技术,可以与各种 LLM 和算法无缝集成,包括 few-shot、自我一致性、各种思维链提示策略等。未来,研究人员将继续探索 RE2 的应用范围,并进一步研究如何优化 RE2 的性能,例如,研究不同的重读次数对模型性能的影响。

🚀 **RE2 的影响:重新思考输入阶段** RE2 的成功表明,对输入阶段的理解对于提升 LLM 的推理能力至关重要。传统的推理研究主要集中在设计多样化的引导提示,而对输入阶段的重视却很少受到关注。RE2 的出现提醒我们,需要重新思考输入阶段在推理过程中的作用,并探索更多能够增强 LLM 对输入理解的技巧。

📚 **RE2 的贡献:推动 LLM 推理研究** RE2 的研究成果为 LLM 推理研究开辟了新的方向。它不仅提供了一种简单有效的方法来提高 LLM 的推理能力,而且还引发了人们对输入阶段在推理过程中的重要性的重新思考。未来,相信 RE2 将会成为 LLM 推理研究的重要工具,并推动 LLM 推理能力的进一步提升。

编辑:alan

众所周知,人类的本质是复读机。

我们遵循复读机的自我修养:敲黑板,划重点,重要的事情说三遍。

but,事实上同样的方法对付AI也有奇效!

有研究证明,在提问的时候故意重复一遍——也就是复制粘贴,即可显著提高LLM的推理能力。

论文地址:https://arxiv.org/pdf/2309.06275

看下面的例子:

作者认为,通常情况下,问题中的重点token(比如这里的tennis balls)无法看到位于它后面的token(上图)。

相比之下,使用重读(re-reading,RE2)的方法,允许「tennis balls」在第二遍中看到自己对应的整个问题(How many tennis balls does he have now?),从而达到双向理解的效果(下图)。

实验表明,在14个数据集上的112个实验中,RE2技术都能带来一致的性能提升,无论是经过指令调整的模型(如ChatGPT),还是未经调整的模型(如Llama)。

实践中,RE2作为独立的技巧,可以与CoT(Let’s think step by step)以及自我一致性方法(self-consistency,SC)一起使用。

下表展示了混合应用多种方法对模型效果的影响。尽管自我一致性聚合了多个答案,但重读机制仍然有助于大多数场景的改进。

接下来,在GSM8K数据集上(使用ChatGPT)进一步研究输入问题复杂性对CoT和RE2提示的推理性能的影响。

这里通过计算真实解释中存在的推理步骤来衡量问题的复杂性,结果如下图所示。

随着问题复杂性的增加,所有提示的表现通常都会下降,但重读的引入提高了LLM应对各种复杂问题的表现。

此外,作者还计算了各代和输入问题之间的覆盖度,证明RE2增加了输出解释中的n-gram (n=1,2,3,4) 召回率。

重要的事情说2遍

现有的推理研究主要集中在设计多样化引导提示,而对输入阶段的理解却很少受到关注。

事实上,理解是解决问题的第一步,至关重要。

当今大多数LLM都采用单向注意力的decoder-only架构 ,在对问题进行编码时,单向注意力限制了token的可见性,这可能会损害对问题的全局理解。

怎么解决这个问题?作者受到人类习惯的启发,尝试让LLM把输入再读一遍。

与引导模型在输出中推理的CoT不同,RE2通过两次处理问题将焦点转移到输入,促进了单向解码器的双向编码,从而增强LLM理解过程。

上图为GSM8K数据集上测试的注意力分布图,较暗的单元格表示较高的注意力。

上虚线三角形内的区域表明,第二遍输入中的每个token都明显关注第一遍中的后续token,证明LLM的重读有望实现对问题的双向理解。

从另一个角度考虑,重读使LLM能够为输入编码分配更多的计算资源,类似于水平增加神经网络的深度。因此,拥有RE2的LLM对问题有更深入的理解。

普通推理

利用带有CoT提示的LLM来解决推理任务,可以用公式表述为:

其中,Cx表示提示输入,来自带有CoT提示指令的模板,z表示自然语言中的采样基本原理。

因此, LLM可以将复杂的任务分解为更易于管理的推理步骤,将每个步骤视为整个解决方案链的组成部分。

RE2 推理

受到人类重读策略的启发,将上面的方程改写为:

所以RE2在实际应用中就是下面这种格式:

其中{Input Query}是输入查询的占位符,左侧部分可以包含其他引发思考的提示。

实验

由于RE2的简单性和对输入阶段的重视,它可以与各种LLM和算法无缝集成,包括few-shot、自我一致性、各种引发思考的提示策略等。

为了验证RE2的有效性和通用性,研究人员在14个数据集上进行了112个实验,涵盖算术、常识和符号推理任务。

算术推理

实验考虑以下七个算术推理基准:

数学应用题的GSM8K基准、具有不同结构的数学应用问题的SVAMP数据集、不同数学应用题的ASDiv数据集、代数应用题的AQuA数据集、三到五年级学生的加法和减法数学应用题、多步骤数学问题数据集,以及单次运算的初等数学应用题数据集。

上表为算术推理基准测试结果。*处表示不使用任何技巧,但效果优于CoT提示的情况。

常识和符号推理

对于常识推理,实验采用StrategyQA、ARC和CSQA数据集。

StrategyQA数据集包含需要多步骤推理的问题;

ARC数据集(ARC-t)分为两个集合:挑战集(ARC-c)和简单集(ARC-e),前者包含基于检索和单词共现算法都错误回答的问题;

CSQA数据集由需要各种常识知识的问题组成。

实验评估两个符号推理任务:日期理解和Coinflip。日期理解是 BigBench数据集的子集,Coinflip是一个问题数据集,根据问题中给出的步骤,判断硬币翻转后是否仍然正面朝上。

结果表明,除了普通ChatGPT上的某些场景之外,具有简单重读策略的RE2,持续增强了LLM的推理性能。

RE2展示了跨各种LLM的多功能性(Text-Davinci-003、ChatGPT、LLaMA-2-13B和LLaMA-2-70B),涵盖指令微调 (IFT) 和非IFT模型。

作者还对RE2在零样本和少样本的任务设置、思维引发的提示方法以及自洽设置方面进行了探索,突出了其通用性。

Prompting

实验严格评估RE2模型在两种基线提示方法上的性能:Vanilla(不添加特技)和CoT(通过逐步的思维过程来指导模型)。

针对不同的任务,作者在提示中设计了答案格式指令,以规范最终答案的结构,便于精确提取答案。

实验的解码策略使用贪婪解码,温度设置为0,从而产生确定性输出。

最后探索一下问题重读次数对推理性能的影响:

上图展示了两个不同的LLM的表现如何随问题重读次数的变化而变化。我们可以发现重读2次使性能提高,之后随着问题重读次数增加,性能开始下降。

猜测原因有两个:i)过度重复问题可能会起到示范作用,鼓励LLM重复问题而不是生成答案,ii)重复问题会显著增加推理和预训练之间的不一致。

参考资料:
https://arxiv.org/pdf/2309.06275


Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 推理能力 重读 RE2 人工智能
相关文章