AI News 2024年10月08日
Bridging code and conscience: UMD’s quest for ethical and inclusive AI
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

UMD的跨学科团队研究AI伦理,探讨将伦理框架融入AI发展。研究者从理论和实践层面探讨AI的伦理问题,包括如何让AI系统具备规范理解、AI对招聘的影响、广泛的伦理问题及解决方案等。

🌐Ilaria Canavotto研究如何让AI系统具备规范理解,提出将自上而下和自下而上两种方法结合的混合方法,以创建能从数据中学习规则并保持基于法律和规范推理的可解释决策过程的AI系统。

💼Vaishnav Kameswaran研究AI在招聘中的实际影响,发现AI驱动的招聘平台可能对残疾候选人造成无意歧视,强调需改变评估方式以避免加剧社会不平等。

📋研究者们强调AI伦理涉及多个关键问题,如数据隐私和同意、透明度和可解释性、社会态度和偏见、跨学科合作等,并提出相应解决方案,如改进AI系统、开发审计工具、推动政策变化等。

As artificial intelligence systems increasingly permeate critical decision-making processes in our everyday lives, the integration of ethical frameworks into AI development is becoming a research priority. At the University of Maryland (UMD), interdisciplinary teams tackle the complex interplay between normative reasoning, machine learning algorithms, and socio-technical systems. 

In a recent interview with Artificial Intelligence News, postdoctoral researchers Ilaria Canavotto and Vaishnav Kameswaran combine expertise in philosophy, computer science, and human-computer interaction to address pressing challenges in AI ethics. Their work spans the theoretical foundations of embedding ethical principles into AI architectures and the practical implications of AI deployment in high-stakes domains such as employment.

Normative understanding of AI systems

Ilaria Canavotto, a researcher at UMD’s Values-Centered Artificial Intelligence (VCAI) initiative, is affiliated with the Institute for Advanced Computer Studies and the Philosophy Department. She is tackling a fundamental question: How can we imbue AI systems with normative understanding? As AI increasingly influences decisions that impact human rights and well-being, systems have to comprehend ethical and legal norms.

“The question that I investigate is, how do we get this kind of information, this normative understanding of the world, into a machine that could be a robot, a chatbot, anything like that?” Canavotto says.

Her research combines two approaches:

Top-down approach: This traditional method involves explicitly programming rules and norms into the system. However, Canavotto points out, “It’s just impossible to write them down as easily. There are always new situations that come up.”

Bottom-up approach: A newer method that uses machine learning to extract rules from data. While more flexible, it lacks transparency: “The problem with this approach is that we don’t really know what the system learns, and it’s very difficult to explain its decision,” Canavotto notes.

Canavotto and her colleagues, Jeff Horty and Eric Pacuit, are developing a hybrid approach to combine the best of both approaches. They aim to create AI systems that can learn rules from data while maintaining explainable decision-making processes grounded in legal and normative reasoning.

“[Our] approach […] is based on a field that is called artificial intelligence and law. So, in this field, they developed algorithms to extract information from the data. So we would like to generalise some of these algorithms and then have a system that can more generally extract information grounded in legal reasoning and normative reasoning,” she explains.

AI’s impact on hiring practices and disability inclusion

While Canavotto focuses on the theoretical foundations, Vaishnav Kameswaran, affiliated with UMD’s NSF Institute for Trustworthy AI and Law and Society, examines AI’s real-world implications, particularly its impact on people with disabilities.

Kameswaran’s research looks into the use of AI in hiring processes, uncovering how systems can inadvertently discriminate against candidates with disabilities. He explains, “We’ve been working to… open up the black box a little, try to understand what these algorithms do on the back end, and how they begin to assess candidates.”

His findings reveal that many AI-driven hiring platforms rely heavily on normative behavioural cues, such as eye contact and facial expressions, to assess candidates. This approach can significantly disadvantage individuals with specific disabilities. For instance, visually impaired candidates may struggle with maintaining eye contact, a signal that AI systems often interpret as lack of engagement.

“By focusing on some of those qualities and assessing candidates based on those qualities, these platforms tend to exacerbate existing social inequalities,” Kameswaran warns. He argues that this trend could further marginalise people with disabilities in the workforce, a group already facing significant employment challenges.

The broader ethical landscape

Both researchers emphasise that the ethical concerns surrounding AI extend far beyond their specific areas of study. They touch on several key issues:

    Data privacy and consent: The researchers highlight the inadequacy of current consent mechanisms, especially regarding data collection for AI training. Kameswaran cites examples from his work in India, where vulnerable populations unknowingly surrendered extensive personal data to AI-driven loan platforms during the COVID-19 pandemic.Transparency and explainability: Both researchers stress the importance of understanding how AI systems make decisions, especially when these decisions significantly impact people’s lives.Societal attitudes and biases: Kameswaran points out that technical solutions alone cannot solve discrimination issues. There’s a need for broader societal changes in attitudes towards marginalised groups, including people with disabilities.Interdisciplinary collaboration: The researchers’ work at UMD exemplifies the importance of cooperation between philosophy, computer science, and other disciplines in addressing AI ethics.

Looking ahead: solutions and challenges

While the challenges are significant, both researchers are working towards solutions:

However, they also acknowledge the complexity of the issues. As Kameswaran notes, “Unfortunately, I don’t think that a technical solution to training AI with certain kinds of data and auditing tools is in itself going to solve a problem. So it requires a multi-pronged approach.”

A key takeaway from the researchers’ work is the need for greater public awareness about AI’s impact on our lives. People need to know how much data they share or how it’s being used. As Canavotto points out, companies often have an incentive to obscure this information, defining them as “Companies that try to tell you my service is going to be better for you if you give me the data.”

The researchers argue that much more needs to be done to educate the public and hold companies accountable. Ultimately, Canavotto and Kameswaran’s interdisciplinary approach, combining philosophical inquiry with practical application, is a path forward in the right direction, ensuring that AI systems are powerful but also ethical and equitable.

See also: Regulations to help or hinder: Cloudflare’s take

Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is co-located with other leading events including Intelligent Automation Conference, BlockX, Digital Transformation Week, and Cyber Security & Cloud Expo.

Explore other upcoming enterprise technology events and webinars powered by TechForge here.

The post Bridging code and conscience: UMD’s quest for ethical and inclusive AI appeared first on AI News.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI伦理 UMD研究 招聘歧视 伦理问题
相关文章