MarkTechPost@AI 2024年10月02日
Logic-of-Thought: Enhancing Logical Reasoning in Large Language Models through Propositional Logic Augmentation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

大型语言模型 (LLMs) 在各种自然语言处理任务中取得了显著进展,但它们在数学和复杂的逻辑推理方面仍然面临挑战。链式思维 (CoT) 提示已成为一种很有前途的方法,通过纳入中间步骤来增强推理能力。然而,LLMs 经常表现出不忠实的推理,即结论与生成的推理链不一致。这一挑战促使研究人员探索更复杂的推理拓扑和神经符号方法。这些方法旨在模拟人类推理过程,并将符号推理与 LLMs 整合。尽管取得了这些进展,但现有方法面临着局限性,特别是逻辑表达式提取过程中的信息丢失问题,这会导致错误的中间推理过程。 研究人员已经开发出各种方法来增强 LLMs 的推理能力。CoT 提示及其变体,如零样本 CoT 和带有自一致性的 CoT,通过将复杂问题分解为中间步骤来改进逻辑推理。其他方法,如最少到最多提示和分而治之,侧重于问题分解。思想树和思想图引入了更复杂的推理拓扑。神经符号方法将 LLMs 与符号推理相结合,以解决不忠实的推理。这些方法包括 LReasoner、LogicAsker、Logic-LM、SatLM 和 LINC,它们将逻辑形式化、符号求解器和 LLMs 整合在一起,以增强推理能力并克服信息丢失问题。 来自中国科学技术大学、中国科学院自动化研究所、北京航空航天大学和京东的几位研究人员提出了逻辑思维 (LoT),这是一种独特的提示方法,旨在解决现有神经符号方法中的信息丢失问题。LoT 从输入上下文中提取命题和逻辑表达式,使用逻辑推理定律扩展它们,并将扩展后的表达式翻译回自然语言。然后将这种扩展的逻辑描述附加到原始输入提示,指导 LLM 的推理过程。通过保留原始提示并以自然语言添加逻辑信息,LoT 避免了完全依赖符号求解器,并减轻了信息丢失。该方法与现有的提示技术兼容,可以无缝集成。在五个逻辑推理数据集上的实验表明,LoT 在显着提高各种提示方法(包括链式思维、自一致性和思想树)的性能方面非常有效。

🤔 **逻辑提取阶段:**LLMs 识别具有条件推理关系的句子,并从输入上下文中提取命题符号和逻辑表达式。

🚀 **逻辑扩展阶段:**使用 Python 程序,利用预定义的推理定律来扩展这些逻辑表达式。

🗣️ **逻辑翻译阶段:**使用 LLMs 将扩展的逻辑表达式转换回自然语言描述。这些描述随后被纳入原始输入提示,为 LLMs 创建一个全面的新提示。

🏆 **LoT 提示显着提高了现有方法在五个逻辑推理数据集上的性能。**LoT+CoT-SC(5) 一直优于其他方法,LoT+SC 在 FOLIO 数据集上使用 GPT-4 取得了最高的准确率。LoT 在 40 次比较中的 35 次中改进了基线方法,证明了其无缝集成和有效性。

⚠️ **在使用 GPT-4 的 RuleTaker 和 ProofWriter 数据集上观察到一些局限性,这归因于信息提取问题。**总体而言,LoT 的独立性能与 CoT 相匹配或超过 CoT,突出了其强大的逻辑推理能力。

🔮 **未来的工作将集中在探索额外的逻辑关系和推理定律,以及支持更多提示方法,以进一步增强 LoT 的逻辑推理能力。**

Large Language Models (LLMs) have made significant strides in various Natural Language Processing tasks, yet they still struggle with mathematics and complex logical reasoning. Chain-of-Thought (CoT) prompting has emerged as a promising approach to enhance reasoning capabilities by incorporating intermediate steps. However, LLMs often exhibit unfaithful reasoning, where conclusions don’t align with the generated reasoning chain. This challenge has led researchers to explore more sophisticated reasoning topologies and neuro-symbolic methods. These approaches aim to simulate human reasoning processes and integrate symbolic reasoning with LLMs. Despite these advancements, existing methods face limitations, particularly the issue of information loss during the extraction of logical expressions, which can lead to incorrect intermediate reasoning processes.

Researchers have developed various approaches to enhance LLMs’ reasoning capabilities. CoT prompting and its variants, such as Zero-shot CoT and CoT with Self-Consistency, have improved logical reasoning by breaking down complex problems into intermediate steps. Other methods like Least-To-Most prompting and Divide-and-Conquer focus on problem decomposition. Tree-of-Thoughts and Graph-of-Thoughts introduce more complex reasoning topologies. Neuro-symbolic approaches combine LLMs with symbolic reasoning to address unfaithful reasoning. These include LReasoner, LogicAsker, Logic-LM, SatLM, and LINC, which integrate logical formalization, symbolic solvers, and LLMs to enhance reasoning capabilities and overcome information loss issues.

Researchers from the University of Science and Technology of China, Institute of Automation, Chinese Academy of Sciences, Beihang University, and JD.com present Logic-of-Thought (LoT), a unique prompting method designed to address the information loss issue in existing neuro-symbolic approaches. LoT extracts propositions and logical expressions from the input context, expands them using logical reasoning laws, and translates the expanded expressions back into natural language. This extended logical description is then appended to the original input prompt, guiding the LLM’s reasoning process. By preserving the original prompt and adding logical information in natural language, LoT avoids complete reliance on symbolic solvers and mitigates information loss. The method is compatible with existing prompting techniques, allowing for seamless integration. Experiments across five logical reasoning datasets demonstrate LoT’s effectiveness in significantly boosting the performance of various prompting methods, including Chain-of-Thought, Self-Consistency, and Tree-of-Thoughts.

LoT framework comprises three key phases: Logic Extraction, Logic Extension, and Logic Translation. In the Logic Extraction phase, LLMs identify sentences with conditional reasoning relationships and extract propositional symbols and logical expressions from the input context. The Logic Extension phase employs a Python program to expand these logical expressions using predefined reasoning laws. Finally, the Logic Translation phase uses LLMs to convert the expanded logical expressions back into natural language descriptions. These descriptions are then incorporated into the original input prompt, creating a comprehensive new prompt for LLMs. This process preserves the original context while augmenting it with additional logical information, effectively guiding the LLM’s reasoning process without relying solely on symbolic solvers or risking information loss.

LoT prompting significantly enhances the performance of existing methods across five logical reasoning datasets. LoT+CoT-SC(5) consistently outperforms other methods, with LoT+SC achieving the highest accuracy on the FOLIO dataset with GPT-4. LoT improves baseline methods in 35 out of 40 comparisons, demonstrating its seamless integration and effectiveness. Minor improvements occur when combining LoT with CoT or CoT-SC due to overlapping capabilities. Some limitations are observed in the RuleTaker and ProofWriter datasets with GPT-4, attributed to information extraction issues. Overall, LoT standalone performance matches or exceeds CoT, highlighting its robust logical reasoning capabilities.

LoT is a robust symbolic-enhancement prompting approach that addresses information loss in neuro-symbolic methods. By deriving expanded logical information from input context using propositional logic, LoT augments original prompts to enhance LLMs’ logical reasoning capabilities. Its compatibility with existing prompting techniques like Chain-of-Thought, Self-Consistency, and Tree-of-Thoughts allows for seamless integration. Experiments demonstrate that LoT significantly improves the performance of various prompting methods across multiple logical reasoning datasets. Future work will focus on exploring additional logical relationships and reasoning laws, as well as supporting more prompting methods to further enhance LoT’s logical reasoning capabilities.


Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter..

Don’t Forget to join our 50k+ ML SubReddit

The post Logic-of-Thought: Enhancing Logical Reasoning in Large Language Models through Propositional Logic Augmentation appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

逻辑推理 大型语言模型 命题逻辑 LoT 神经符号方法
相关文章