未知数据源 2024年10月02日
Rotating cylinder amplifies electromagnetic fields
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

物理学家在电磁系统中观测到泽尔多维奇效应,此前该观测被认为极难实现。此效应在简化的感应发电机中被发现,可能具有基础性。研究人员通过实验详细阐述了该效应的原理、条件及应用等。

🧲泽尔多维奇效应指电磁波被旋转金属圆柱体散射时,可从圆柱体获得机械能而被放大。该效应仅在物体以高于入射波频率除以波角动量数的角速度旋转时才会发生,且此实验中该数为1。

🔬在新实验中,研究人员使用带间隙的电感在铝制圆柱体周围产生振荡磁场。当圆柱体旋转速度超过场频率且满足泽尔多维奇条件后,其电阻变为负值,电路功率被放大。

💡观测到该效应在声学及电磁系统中存在,表明其具有基础性,且在电磁系统中观测到意味着可能在量子层面进行观察。研究团队将尝试改进实验设置,以实现更高效的泽尔多维奇放大。

Physicists have observed the Zel’dovich effect in an electromagnetic system – something that was thought to be incredibly difficult to do until now. This observation, in a simplified induction generator, suggests that the effect could in fact be quite fundamental in nature.

In 1971, the Russian physicist Yakov Zel’dovich predicted that electromagnetic waves scattered by a rotating metallic cylinder should be amplified by gaining mechanical rotational energy from the cylinder. The effect, explains Marion Cromb of the University of Southampton, works as follows: waves with angular momentum – or twist – that would usually be absorbed by an object, instead become amplified by that object. However, this amplification only occurs if a specific condition is met: namely, that the object is rotating at an angular velocity that’s higher than the frequency of the incoming waves divided by the wave angular momentum number. In this specific electromagnetic experiment, this number was 1, due to spin angular momentum, but it can be larger.

In previous work, Cromb and colleagues tested this theory in sound waves, but until now, it had never been proven with electromagnetic waves.

Spin component is amplified

In their new experiments, which are detailed in Nature Communications, the researchers used a gapped inductor to induce a magnetic field that oscillates at an AC frequency around a smooth cylinder made of aluminium. The gapped inductor comprises an AC current-carrying wire coiled around an iron ring with a gap in it. “This oscillating field is an easy way to create the sum of two spinning fields in opposite directions,” explains Cromb. “When the cylinder rotates faster than the field frequency, it thus amplifies the spin component rotating in the same direction.”

The cylinder acts as a resistor in the circuit when it is not moving, but as it rotates, its resistance decreases. As the rotation speed increases, after the Zel’dovich condition has been met, the resistance becomes negative. “We measured the power in the circuit at different rotation speeds and observed that it was indeed amplified once the cylinder span fast enough,” says Cromb.

Until now, it was thought that observing the Zel’dovich effect in an electromagnetic system would not be possible. This was because, in Zel’dovich’s predictions, the condition for amplification (while simple in description), would only be possible if the cylinder was rotating at speeds close to the speed of light. “Any slower, and the effect would be too small to be seen,” Cromb adds.

Once they had demonstrated the Zel’dovich effect with sound waves, the Southampton University scientists – together with their theory colleagues at the University of Glasgow and IFN Trento – realized that they could overcome some of the limitations of Zel’dovich’s example while still testing the amplification condition. “The actual experimental set-up is surprisingly simple,” Cromb tells Physics World.

Observing the effect on a quantum level?

Knowing that this effect is present in different physical systems, both in acoustics and now in electromagnetic circuits, suggests that it is quite fundamental in nature, Cromb says. And seeing it in an electromagnetic system means that the team might now be able to observe the effect on a quantum level. “This would be a fascinating test of how quantum mechanics, thermodynamics and (rotational) motion all work together.”

Looking forward, the researchers will now attempt to improve their experimental set-up. At present, it relies on an oscillating magnetic field that contains equal co-rotating and counter-rotating spin components. Only one of these should be Zel’dovich-amplified by the rotating cylinder (the co-rotating component) while the other is only ever absorbed, explains Cromb. “Ideally, we want to switch to a rotating magnetic field so we can confirm that it is only when the field and cylinder rotate in the same direction that the amplification occurs. This would mean that the whole field can be amplified and not just part of it.”

The team has already made some progress in this direction by switching to using a cylindrical stator (the stationary part), not just because it can create such a rotating magnetic field, but also because it fits snugly around the cylinder and thus interacts more strongly with it. This should increase the size of the Zel’dovich effect so it can be more easily measured.

“We hope that these improvements will help us also show a situation akin to a ‘black hole bomb’ where the Zel’dovich amplification gets reflected back efficiently enough to create a positive feedback loop, and the power in the circuit skyrockets exponentially,” says Cromb.

The post Rotating cylinder amplifies electromagnetic fields appeared first on Physics World.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

泽尔多维奇效应 电磁系统 量子层面 实验改进
相关文章