MarkTechPost@AI 2024年10月01日
Ten Effective Strategies to Lower Large Language Model (LLM) Inference Costs
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

大型语言模型 (LLM) 已成为人工智能的基石,为从聊天机器人和虚拟助手到高级文本生成和翻译系统等一切提供支持。尽管它们功能强大,但与这些模型相关的最紧迫挑战之一是推理成本高昂。该成本包括计算资源、时间、能耗和硬件磨损。对于希望扩大其 AI 运营规模而不超出预算的企业和研究人员来说,优化这些成本至关重要。以下列出了十种经过验证的策略,可以在保持性能和准确性的同时降低 LLM 推理成本。

👩‍💻 **量化**:量化是一种技术,它降低了模型权重和激活的精度,从而导致神经网络的更紧凑表示。量化模型可以使用 16 位甚至 8 位整数,而不是使用 32 位浮点数,从而显着减少内存占用和计算负荷。这种技术对于在计算能力有限的边缘设备或环境中部署模型很有用。虽然量化可能会导致模型精度略微下降,但与可观的成本节省相比,其影响通常很小。

🌳 **剪枝**:剪枝涉及从模型中删除不太重要的权重,有效地减少了神经网络的大小,而不会在性能方面做出太多牺牲。通过修剪对模型输出贡献最小的神经元或连接,剪枝有助于减少推理时间和内存使用量。剪枝可以在训练期间迭代进行,其有效性在很大程度上取决于所得网络的稀疏性。这种方法对于包含冗余或未使用参数的大规模模型特别有用。

🧠 **知识蒸馏**:知识蒸馏是一个过程,其中一个较小的模型(称为“学生”)被训练来复制一个较大的“教师”模型的行为。学生模型学习模仿教师的输出,使其能够以与教师相当的水平执行,尽管它具有更少的参数。这种技术允许在生产环境中部署轻量级模型,从而显着降低推理成本,而不会牺牲太多精度。知识蒸馏对于需要实时处理的应用特别有效。

📦 **批处理**:批处理是同时处理多个请求,这可以导致更有效的资源利用和降低总体成本。通过将多个请求分组并并行执行,可以优化模型的计算,最大限度地减少延迟并最大限度地提高吞吐量。批处理广泛用于多个用户或系统需要同时访问 LLM 的场景,例如客户支持聊天机器人或基于云的 API。

🗜️ **模型压缩**:模型压缩技术(如张量分解、分解和权重共享)可以显着减小模型的大小,而不会影响其性能。这些方法将模型的内部表示转换为更紧凑的格式,从而减少计算需求并加快推理速度。模型压缩对于存储限制或在内存有限的设备上部署的情况很有用。

🚪 **提前退出**:提前退出是一种技术,允许模型一旦对自己的预测有信心就终止计算。模型不会经过每一层,而是会在中间层产生足够自信的结果时提前退出。这种方法在层次模型中特别有效,在层次模型中,每个后续层都会改进前一层产生的结果。提前退出可以显着减少所需的平均计算量,从而减少推理时间和成本。

🖥️ **优化硬件**:使用针对 AI 工作负载(如 GPU、TPU 或定制 ASIC)的专用硬件可以极大地提高模型推理效率。这些设备针对并行处理、大型矩阵乘法和 LLM 中的常见操作进行了优化。利用优化的硬件可以加快推理速度并降低运行这些模型相关的能源成本。为基于云的部署选择正确的硬件配置可以节省大量成本。

🗄️ **缓存**:缓存涉及存储和重用先前计算的结果,这可以节省时间和计算资源。如果模型反复遇到类似或相同的输入查询,缓存允许它立即返回结果,而无需重新计算。缓存对于自动完成功能或预测文本等任务特别有效,在这些任务中,许多输入序列是相似的。

✍️ **提示工程**:为 LLM 设计清晰而具体的指令(称为提示工程)可以导致更有效的处理和更快的推理时间。设计良好的提示可以减少歧义,最大限度地减少令牌使用量,并简化模型的处理。提示工程是一种低成本、高影响力的方法,可以优化 LLM 性能,而无需更改底层模型架构。

🌐 **分布式推理**:分布式推理涉及将工作负载分布在多台机器上,以平衡资源使用并减少瓶颈。这种方法对于大规模部署很有用,在这些部署中,一台机器只能处理模型的一部分。通过分布计算,模型可以实现更快的响应时间并处理更多同时请求,使其成为基于云的推理的理想选择。

总而言之,降低 LLM 的推理成本对于维持可持续和可扩展的 AI 运营至关重要。企业可以通过实施以下十种策略的组合来最大限度地提高其 AI 系统的效率:量化、剪枝、知识蒸馏、批处理、模型压缩、提前退出、优化硬件、缓存、提示工程和分布式推理。仔细考虑这些技术可以确保 LLM 保持强大且具有成本效益,从而实现更广泛的采用和更具创新性的应用。

Large Language Models (LLMs) have become a cornerstone in artificial intelligence, powering everything from chatbots and virtual assistants to advanced text generation and translation systems. Despite their prowess, one of the most pressing challenges associated with these models is the high cost of inference. This cost includes computational resources, time, energy consumption, and hardware wear. Optimizing these costs is paramount for businesses and researchers aiming to scale their AI operations without breaking the bank. Here are ten proven strategies to reduce LLM inference costs while maintaining performance and accuracy:

Quantization

Quantization is a technique that decreases the precision of model weights and activations, resulting in a more compact representation of the neural network. Instead of using 32-bit floating-point numbers, quantized models can leverage 16-bit or even 8-bit integers, significantly reducing memory footprint and computational load. This technique is useful for deploying models on edge devices or environments with limited computational power. While quantization may introduce a slight degradation in model accuracy, its impact is often minimal compared to the substantial cost savings.

Pruning

Pruning involves removing less significant weights from the model, effectively reducing the size of the neural network without sacrificing much in terms of performance. By trimming neurons or connections that contribute minimally to the model’s outputs, pruning helps decrease inference time and memory usage. Pruning can be performed iteratively during training, and its effectiveness largely depends on the sparsity of the resulting network. This approach is especially beneficial for large-scale models that contain redundant or unused parameters.

Knowledge Distillation

Knowledge distillation is a process where a smaller model, known as the “student,” is trained to replicate the behavior of a larger “teacher” model. The student model learns to mimic the teacher’s outputs, allowing it to perform at a level comparable to the teacher despite having fewer parameters. This technique enables the deployment of lightweight models in production environments, drastically reducing the inference costs without sacrificing too much accuracy. Knowledge distillation is particularly effective for applications that require real-time processing.

Batching

Batching is the simultaneous processing of multiple requests, which can lead to more efficient resource utilization and reduced overall costs. By grouping several requests and executing them in parallel, the model’s computation can be optimized, minimizing latency and maximizing throughput. Batching is widely used in scenarios where multiple users or systems need access to the LLM simultaneously, such as customer support chatbots or cloud-based APIs.

Model Compression

Model compression techniques like tensor decomposition, factorization, and weight sharing can significantly reduce a model’s size without affecting its performance. These methods transform the model’s internal representation into a more compact format, decreasing computational requirements and speeding up inference. Model compression is useful for scenarios where storage constraints or deployment on devices with limited memory are a concern.

Early Exiting

Early exiting is a technique that allows a model to terminate computation once it is confident in its prediction. Instead of passing through every layer, the model exits early if an intermediate layer produces a sufficiently confident result. This approach is especially effective in hierarchical models, where each subsequent layer refines the result produced by the previous one. Early exiting can significantly reduce the average number of computations required, reducing inference time and cost.

Optimized Hardware

Using specialized hardware for AI workloads like GPUs, TPUs, or custom ASICs can greatly enhance model inference efficiency. These devices are optimized for parallel processing, large matrix multiplications, and common operations in LLMs. Leveraging optimized hardware accelerates inference and reduces the energy costs associated with running these models. Choosing the right hardware configurations for cloud-based deployments can save substantial costs.

Caching

Caching involves storing and reusing previously computed results, which can save time and computational resources. If a model repeatedly encounters similar or identical input queries, caching allows it to return the results instantly without re-computing them. Caching is especially effective for tasks like auto-complete or predictive text, where many input sequences are similar.

Prompt Engineering

Designing clear and specific instructions for the LLM, known as prompt engineering, can lead to more efficient processing and faster inference times. Well-designed prompts reduce ambiguity, minimize token usage, and streamline the model’s processing. Prompt engineering is a low-cost, high-impact approach to optimizing LLM performance without altering the underlying model architecture.

Distributed Inference

Distributed inference involves spreading the workload across multiple machines to balance resource usage and reduce bottlenecks. This approach is useful for large-scale deployments, where a single machine can only handle part of the model. The model can achieve faster response times and handle more simultaneous requests by distributing the computations, making it ideal for cloud-based inference.

In conclusion, reducing the inference cost of LLMs is critical for maintaining sustainable and scalable AI operations. Businesses can maximize the efficiency of their AI systems by implementing a combination of these ten strategies: quantization, pruning, knowledge distillation, batching, model compression, early exiting, optimized hardware, caching, prompt engineering, and distributed inference. Careful consideration of these techniques ensures that LLMs remain powerful and cost-effective, allowing for broader adoption and more innovative applications.

The post Ten Effective Strategies to Lower Large Language Model (LLM) Inference Costs appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 LLM 推理成本 AI优化
相关文章